
ScaFaCoS Manual

Matthias Bolten
Department of Mathematics and Science, University of Wuppertal

bolten@math.uni-wuppertal.de

Florian Fahrenberger
Institute for Computational Physics, University of Stuttgart

René Halver
Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH

Frederik Heber
Institute for Numerical Simulation, University of Bonn

Michael Hofmann
Faculty of Computer Science, Technische Universität Chemnitz

Ivo Kabadshow
Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH

Olaf Lenz
Institute for Computational Physics, University of Stuttgart

Michael Pippig
Faculty of Mathematics, Technische Universität Chemnitz

michael.pippig@mathematik.tu-chemnitz.de

http://www.tu-chemnitz.de/~mpip

Mathias Winkel
Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH

pepc@fz-juelich.de

http://www.fz-juelich.de/ias/jsc/pepc

January 14, 2014

http://www.tu-chemnitz.de/~mpip
http://www.fz-juelich.de/ias/jsc/pepc

Contents

I. User’s Guide 9

1. Introduction 11
1.1. What ScaFaCoS Computes . 11

1.2. Acknowledgements . 12

1.3. Licensing . 12

1.4. Requirements . 12

1.5. Feature Matrix . 13

2. Compiling and installing ScaFaCoS 15

3. Interface 19
3.1. Basic Ideas of the Interface . 19

3.2. Use of the ScaFaCoS Library . 20

3.3. Error Handling . 27

3.4. Fortran Specifics . 28

3.5. Further Functionality . 28

4. FMM – Fast Multipole Method 31

5. MEMD – Maxwell Equation Molecular Dynamics 33
5.1. Description of the method . 33

5.2. Systems suited for the algorithm . 35

5.3. Solver-specific parameters . 36

5.4. Solver-specific functions . 37

5.5. Known bugs or missing features . 38

6. MMM1D 39

7. MMM2D 41

8. Ewald 43

9. P2NFFT – Particle-Particle NFFT 45
9.1. Description of the Method . 45

9.2. Features . 47

3

9.3. Solver-specific Parameters . 47

9.4. Solver-specific Functions . 53

10.P3M – Particle-Particle Particle-Mesh Ewald 59
10.1. Features . 59

10.2. Solver-specific Parameters . 59

11.PEPC – Pretty Efficient Parallel Coulomb Solver 61

12.PP3MG – NameExpanded 67

13.vmg – Versatile Multigrid 69

14.direct – Direct summation 75

15.List of Functions 77
15.1. Mandatory Functions . 77

15.2. Generic Functions . 81

15.3. Direct Solver specific Functions . 86

15.4. Ewald Solver specific Functions . 86

15.5. FMM Solver specific Functions . 86

15.6. MEMD Solver specific Functions . 86

15.7. MMM1D Solver specific Functions . 86

15.8. MMM2D Solver specific Functions . 86

15.9. PEPC Solver specific Functions . 86

15.10.PP3MG Solver specific Functions . 86

15.11.P2NFFT Solver specific Functions . 86

15.12.P3M Solver specific Functions . 86

15.13.VMG Solver specific Functions . 89

II. Developer’s Guide 91

16.Build System 93

17.Implementation 97
17.1. Licenses . 97

18.Test Environment 99
18.1. Generic Test Program scafacos test . 99

18.2. Numerical Results . 104

18.3. Generation of Simulation Data . 104

18.4. Error . 104

18.5. Distributions and Results . 105

4

III. Bibliography 109

19.Bibliography 111

IV. Index 113

Index 119

5

Todo list

Fix introduction . 11
Virial . 11
Virial . 12
Is MPI 1.2 really enough? . 13
FFTW3 is part of the library . 13
Should the near field solver be available to the user? 28
quantify these requirements . 65
warn only once on one process, if box is non-cubic 65
move PEPC citations to bibliography . 65
move vmg citations to bibliography . 73
fcs method has near fehlt! . 82

7

Part I.

User’s Guide

9

1. Introduction

Fix introduction

1.1. What ScaFaCoS Computes

1.1.1. Fully Non-Periodic Boundary Conditions

In this part we apply our fast summation algorithm to a system of M charged particles
located at source nodes xl ∈ R3 with charge ql ∈ R. We are interested in the evaluation
of the electrostatic potential φ at target node xj ∈ R3,

φ(xj) =
M∑
l=1
l 6=j

ql
‖xj − xl‖2

, j = 1, . . . ,M, (1.1)

and the electrostatic fields E evaluated at position xj ∈ R3,

E(xj) = −
M∑
l=1
l 6=j

ql
xj − xl
‖xj − xl‖32

, j = 1, . . . ,M. (1.2)

Furthermore we are interested in the computation of the total electrostatic potential
energy

U :=
1

2

M∑
j=1

qjφ(xj),

which can be evaluated straightforward after the computation of the potentials φ(xj), j =
1, . . . ,M . Virial

1.1.2. Fully Periodic Systems

We consider a system of charged particles coupled via the Coulomb potential, a cubic
simulation box with edge length B, containing M charged particles, each with a charge
ql ∈ R, located at xl ∈ [0, B)3. Periodic boundary conditions in a system without
cut-off is represented by replicating the simulation box in all directions of space. The
electrostatic potential φ at y ∈ [0, B)3, can be written as a lattice sum, see [6, Chapter

11

12] and [12],

φ(xj) =
∑
r∈Z3

M∑
l=1

l 6=j for r=0

ql
‖xj − xl + rB‖2

, j = 1, . . . ,M (1.3)

and the electrostatic field E evaluated at position xj ∈ [0, B)3 is given by

E(xj) = −
∑
r∈Z3

M∑
l=1

l 6=j for r=0

ql
xj − xl + rB

‖xj − xl + rB‖32
, j = 1, . . . ,M , (1.4)

Furthermore we are interested in the computation of the total electrostatic potential
energy

U :=
1

2

M∑
j=1

qjφ(xj),

which can be evaluated straightforward after the computation of the potentials φ(xj),
j = 1, . . . ,M like in the non-periodic case.Virial

1.2. Acknowledgements

This is a network project of German research groups working on a unified parallel library
for various methods to solve electrostatic (and gravitational) problems in large particle
simulations. The project is financed by the German Ministry of Education and Science
(BMBF) under contract number 01 IH 08001 A-D. Main focus of the project is to
provide methods for electrostatic problems and to implement efficient parallel methods
in order to scale up to thousands of processors. ScaFaCoS is supported within the period
01/01/2009 - 31/12/2011.

1.3. Licensing

This library is open source software. It comes with parts that are distributed under
the GNU General Public License (GPL) and parts that are distributed under the GNU
Lesser General Public License (LGPL). Please refer to the documentation of the in-
dividual solver methods for details. The toplevel configure script provides a switch
--disable-gpl to disable the build of all methods which allow only a distribution un-
der the GPL.

1.4. Requirements

The following libraries and tools are required to be able to compile and use ScaFaCoS:

12

MPI As ScaFaCoS is parallel software, you will need a working MPI environment that
implements at least the MPI standard version 1.2.Is MPI 1.2 re-

ally enough?
C99 compiler The C-code of ScaFaCoS uses the C99 standard, therefore a compiler

that is able to compile C99 code must be available. We do not know of any recent
platform that does not provide a C99 compiler.

C++ compiler Some methods (e.g. VMG) require a C++ compiler.

Fortran 2003 compiler The Fortran code of some methods (e.g. FMM) does require a
Fortran 2003 compiler.

FFTW Some solver methods (e.g. P3M and P2NFFT) need the FFTW library version
3.3.0 or later 1 for Fourier transforms. For P2NFFT, the MPI interface of FFTW3
has to be available. You do not only need the library itself, but also the header
files. Depending on the operating system, these may come in separate development
packages (e.g. fftw3-dev). FFTW3 is part

of the library

1.5. Feature Matrix

1http://www.fftw.org/

13

http://www.fftw.org/

F
M

M

M
E

M
D

M
M

M
*
D

P
2
N

F
F

T

P
3
M

P
E

P
C

P
P

3
M

G

V
M

G

D
ir

e
c
t

E
w

a
ld

3D-periodic + + – + + + + + + +
non-cubic, cuboid – – + + +a + ? + +
non-cubic, non-cuboid ? ? – ? +b ? ? ? ?
Virials ? – ?c ? –d (scalar) ? ? –

Nonperiodic + – – + – + – ? + –
non-cubic – + + ? +
Virials + + –e ? +

Partially periodic + – + –f – +g – ? + –

Tunable accuracy + – + + + – – – – +

Delegate near-field – – ? + + – ? ? – –

auntested
buntested
cdiagonal approximation
dimplementation planned
eimplementation planned
fwork in progress
guntested

Table 1.1.: Overview of the features of the different solvers.

14

2. Compiling and installing ScaFaCoS

The ScaFaCoS library uses the GNU build system and thus compiling and installing
consists of the common steps configure and make. In the following, the steps for
building the library from source are explained in more details.

1) Obtain a copy of the ScaFaCoS library sources. Single releases of the library
sources can be downloaded from the official web site (http://www.scafacos.de).
Furthermore, the sources of the library are hosted on GitHub where the lasted
version is publicly available (see http://github.com/scafacos). A local copy of
the library repository can be obtain with the following command:

git clone git@github.com:scafacos/scafacos.git

Building the library from the git repository requires recent versions of the GNU
Autotools, i.e. m4, Autoconf, Automake, Libtool. Details about the specific ver-
sions required can be found in Sect. 16. Executing Autotools has to be performed
with the bootstrap script:

./bootstrap

After executing this script, the source directory should contain a newly generated
configure script.

2) Compiling the library consists of the two steps configure and make. For the
following description it is assumed that the library sources are stored in directory
scafacos/.

a) The library can be build either inside or outside the source tree. To build the
library outside the source tree, change the working directory to the desired
build directory:

mkdir ../build_fcs

cd ../build_fcs

Execute the configure script as follows:

../scafacos/configure <options>

See ’./configure --help’ (or ’./configure --help=recursive’) to dis-
play all supported options. The main options of the library are listed in
Table 2.1.

15

http://www.scafacos.de
http://github.com/scafacos

b) Run make to build the library. Use option -j <N> to execute (at most) N

build jobs in parallel.

3) Run test programs:

a) Run make check to execute all test programs of the library. The build sys-
tem tries to finding out how MPI jobs can be started. Edit file test/defs.in
to modify the method that was automatically determined. Alternatively,
configure option MPIEXEC=... can be used to define the command for exe-
cuting MPI programs.

b) The test programs are located in test/c and test/fortran. See scripts
startsh to execute single test programs.

c) If the execution of MPI programs with the previous methods fails, then it is
also possible to start the test programs manually. Use scripts startsh

(in test/c/ or test/fortran/) and replace command start mpi job with
an appropriate command for executing MPI programs.

4) Run make install to install the header and library files (i.e., to /usr/local/ if
not specified otherwise with --prefix=... during configure). Alternatively, the
header and library files can be found in src/ and lib/, respectively.

5) A configuration file scafacos-fcs.pc for pkg-config is created in packages/ and
installed with make install. Use the following commands to determine the com-
piler and linker flags required to integrate the library into an application program:

pkg-config --cflags scafacos-fcs

pkg-config --libs scafacos-fcs

16

-C Enable caching to speed up configure.

--prefix=PREFIX Install library files to directory PREFIX.

--enable-fcs-solvers=... Enable only the specified list of solvers.
--disable-fcs-SOLVER Disable the specified solver SOLVER.

--enable-fcs-int=... Set ScaFaCoS integer type to the given C type.
--enable-fcs-float=... Set ScaFaCoS float type to the given C type.
--enable-fcs-integer=... Set ScaFaCoS integer type to the given Fortran type.
--enable-fcs-real=... Set ScaFaCoS float type to the given Fortran type.

--enable-fcs-info Enable info output.
--enable-fcs-debug Enable debug output.
--enable-fcs-timing Enable timing output.

--enable-single-lib Build and install only a single file libfcs.a.

MPICC=... CFLAGS=... Set (MPI) C compiler and flags.
MPICXX=... CXXFLAGS=... Set (MPI) C++ compiler.
MPIFC=... FCFLAGS=... Set (MPI) Fortran compiler.

Table 2.1.: List of common configure options of the ScaFaCoS library.

17

3. Interface

3.1. Basic Ideas of the Interface

The basic idea of the ScaFaCoS interface is that it should be very simple to include
the library to existing programs and packages. Therefore the aim was to have as few
required functions as possible for adding the library. To use the library one has only five
functions to add to an existing code, if the default parameters for each solver suffice. Of
course there is the possibility to change the parameters of the solvers by use of additional
functions. In this sections the basic functions will be described, so that the reader is
able to add the ScaFaCoS library to his or her own code.
To understand the following sections, one has to know the idea behind the use of the
library. One usage cycle is divided into five sections, which are mapped to the five
required functions. These sections are:

1. Initialization of the library

2. Setting the non-solver specific parameters

3. Tuning the solver

4. Running the solver (more then once if needed)

5. Destroying allocated resources of the library

These five steps are each tied to one call of the respective function. In the initialization
step the communicator used by the library is defined, as well as the solver to used is
chosen. During the second step the global parameters like system size and periodicity of
the system are set. Within the third step solver-specific tuning methods are called (where
possible) which try to utilize the system in order to improve the solvers performance or
set up data structures requiring knowledge about particle positions. The central step is
the fourth step in which the calculation of the Coulomb interactions takes place. E.g.
within a MD code this step can be called for each time step, in order to take into
consideration the shifting particle positions. After the calculation is or calculations are
done, the last step frees all the resources which were used by the library.
The interface functions are provided in a (C++ compatible) C version and in a Fortran
version, which is a wrapper of the C version. In the section both variants will be
described. Table 3.1 gives an overview about all solvers included until the creation of
this documentation.

19

ScaFaCoS abbreviation full solver name

direct Direct solver (14)

ewald Ewald summation (8)

fmm Fast Multipole Method (4)

memd Maxwell equations Molecular Dynamics (5)

mmm1d (6)

mmm2d (7)

pepc Pretty Efficient Parallel Coulomb solver (Barnes-
Hut Tree Code) (11)

pp3mg Particle-Particle Particle-Multigrid solver (12)

p2nfft Parallel Particle Non-Equidistant FFT solver (9)

p3m Particle-Particle Particle-Mesh method (10)

vmg Versatile Multigrid method (13)

Table 3.1.: Solvers implemented in ScaFaCoS (02/2012)

3.2. Use of the ScaFaCoS Library

In this section the implementation of the steps presented in the previous section will be
explained. Before the actual implementation of the ScaFaCoS library to a code will be
described, the headers and modules and the data types and constants provided by the
library will be presented.

3.2.1. Header and Modules

To simplify the inclusion of the library into existing or newly written codes, the library
provides either a single header for C or a single module for Fortran which needs to be
included into the code. For C this is the fcs.h header and for Fortran this is the module
fcs module (fig. 3.1).

Due to the use of the pkg-package tool [2], there is a easy way to get the correct library
and include options for the compilation of the code with ScaFaCoS included. Figure 3.2
shows how pkg-config can be used to that end at an example. In order to use pkg-config
make check has to be used before so that an installation is created.

20

/∗ i n c l u s i o n in C ∗/
#include ” f c s . h”

! i n c l u s i o n in Fortran
use f c s module

Figure 3.1.: Use of the provided header / module of the ScaFaCoS library.

export PKG CONFIG PATH=<ScaFaCoS i n s t a l l path>/ l i b /pkg−c o n f i g←↩
: ${PKG CONFIG PATH}

FCSLIB=$ (s h e l l pkg−c o n f i g −− l i b s s ca faco s−f c s)
FCSINC=$ (s h e l l pkg−c o n f i g −−c f l a g s s ca faco s−f c s)
gcc −o <a p p l i c a t i o n name> [o ther opt ions] ${FCSLIB} ${FCSINC}←↩

<source (s)>

Figure 3.2.: exemplary usage of pkg-config to get the necessary information for
compilation

3.2.2. Data Types and Constants

The library provides data types for C (table 3.2) and data kinds Fortran (table 3.3),
which are either defined within the configure script or set to default values by the con-
figure script. During this procedure the Fortran data types are matched to the corre-
sponding C data types in order to ensure compatibility between the Fortran wrapper
and the C functions underneath. The default values for these data types are:

In addition to that the library supplies an additional data type, which is used for data
transport between the different functions. This data type is FCS, which is a pointer
to a struct containing the common information about the simulation system (box size,
periodicity, ...). From the user side it is only used as an argument to the different library
functions and must not be changed by him. Otherwise the behavior of the library is
undefined.
Furthermore there are some definitions, which are used within the library and which can

ScaFaCoS data type data type (C)

fcs int int

fcs float double

Table 3.2.: ScaFaCoS data types for C

21

ScaFaCoS data type data type (Fortran 2003)

fcs integer kind isoc C INT

fcs real kind isoc C DOUBLE

Table 3.3.: ScaFaCoS data kinds for Fortran

be used by the user.
The mathematical constants (table 3.4) can be used in C and in Fortran. Due to the

FCS prefix it is ensured, that they don’t interfere with eventual definitions by the user
or the system for these values. As a mean to simplify error handling within the library
the error values are also defined as macros (table 3.5).

Furthermore there are two structures defined, which are used internally to store pro-
vided parameters and error details. These structures are called FCS and FCSResult.
FCS will be created during the initialization step (3.2.3) and filled during the parameter
setup step (3.2.4). After that it needs to be supplied for the tuning (3.2.5) and calcu-
lation step (3.2.6). Finally it will be freed during the clean up step (3.2.7). FCSResult
will be used for error handling and the needed getter-functions will be explained in the
section on error handling (3.3)

3.2.3. Initialization Step

During the initialization step, the library is supplied with all information that cannot be
changed during the simulation by use of the function fcs init (fig. 15.1). This information
includes the MPI communicator, which is to be used and the chosen method. With this
information a FCS data structure is created. The calls in C and Fortran differ only in
the data types of the arguments. While C supplies an unique MPI Comm type for MPI
communicators, in Fortran these are represented by integer values. Also Fortran does
not grant access to pointers in the same fashion as C does. In order to circumvent this,
the Fortran interface uses the c ptr type ([3, p. 565f.]) as a replacement.

The initialization step is mandatory for the use of the ScaFaCoS library, since in it
the most important information is set. This is on the one hand the choice of solver and
on the other hand the parallel environment in which the library is used, as described by
the MPI communicator. (see also table 3.6)
If the function returns successfully, it returns a NULL value, else it returns as an error
value FCS NULL ARGUMENT if one of the provided arguments is not defined or
FCS ALLOC FAILED if the FCS structure could not be allocated. If an invalid solver
was chosen, then the function returns FCS WRONG ARGUMENT, e.g. if a method
was chosen, that was disabled in the configure script.

22

C macro name value

FCS E Euler constant e= 2.71828 . . .

FCS LOG2E log2 e= 1.44269 . . .

FCS LOG10E log10 e= 0.43429 . . .

FCS LN2 loge 2 = 0.69314 . . .

FCS LN10 loge 10 = 2.30258 . . .

FCS PI π= 3.14159 . . .

FCS PI 2 π/2 = 1.57079 . . .

FCS PI 4 π/4 = 0.78539 . . .

FCS 1 PI 1/π= 0.31830 . . .

FCS 2 PI 2/π= 0.63661 . . .

FCS 2 SQRTPI 2/
√
π= 1.12837 . . .

FCS SQRT2
√

2 = 1.41421 . . .

FCS SQRT1 2 1/
√
2 = 0.70710 . . .

Table 3.4.: ScaFaCoS mathematical macros

3.2.4. Parameter Setup Step

This step is two-fold, the parameters describing the system are set, as well as the param-
eters for the solver chosen in the initialization step (3.2.3). The former is mandatory,
because the information about the system is needed by the solvers in order to calculate
the correct forces, while the latter is optional as the solvers provide (non-optimal) default
parameters for themselves.

As can be seen in figure 15.2 the calls differ for C and Fortran. Since plain C does
not provide a logical data type, e.g. bool, the C interface uses integer variables for this
purpose. The Fortran data kinds are linked to the C data types set in the configure
script. Possible return values are NULL for a successful return and either
FCS WRONG ARGUMENT if an argument is not defined or FCS WRONG VALUE if
an argument has an invalid value.

23

C macro name meaning

FCS SUCCESS no error occurred (deprecated)

FCS NULL ARGUMENT an argument passed to the method was undefined

FCS ALLOC FAILED an internal allocation of memory failed

FCS WRONG ARGUMENT it was tried to set an parameter belonging to
another method

FCS MISSING ELEMENT a system parameter was not set

FCS LOGICAL ERROR a violation of set parameters was encountered

FCS INCOMPATIBLE METHOD the method cannot be used for given system

FCS MPI ERROR an MPI error was encountered

FCS FORTRAN CALL ERROR an error occurred while using the Fortran wrap-
per

Table 3.5.: ScaFaCoS error values

parameter
name

description valid values

handle pointer to parameter contain-
ing structure

FCS (C) or type (c ptr) (Fortran)

method chosen method abbreviation from table 3.1

comm MPI communicator the library
has to work on

valid MPI communicator

Table 3.6.: Parameters for fcs init

24

b
ox

c

b
ox

b

box a

x

z

y

off
se

t

Figure 3.3.: Scheme of system parameters describing the form and position of the simu-
lation box

The common setup requires basic data about the simulation system. An overview can
be seen in table 3.7. The box vectors describe the form of the box, in which the particles
reside. For each solver there can be certain restrictions as for which kind of systems
they can simulate. To get an idea which solvers work best (or work at all) with which
systems please refer to the corresponding solver description within this documentation.
In general no solver is able to handle non-orthogonal boxes as of yet, although the
interface should be able to handle these kind of boxes. The offset enables the library to
handle systems, which are shifted from the coordinate origin. For a graphical scheme,
please refer to figure 3.3. The use of periodicity is likewise restricted as the box forms.
Not every solver is able to cope with every combination of periodicity. The only common
parameter not related to the system is the near field flag, which determines whether a
method should perform its near field computations by itself or not. By default, all
solvers compute the interactions entirely by themselves. However, some solvers provide
the possibility to delegate their near field computations to the main program. If the near
field flag is set to false (i.e. 0), then interactions inside a solver-specific cutoff range are
not computed. The cutoff range can be retrieved (set) with a separate getter (setter)
function. The solver methods provide separate potential functions for performing their
near field computations in the main program. The functionality of the near field flag is
currently supported by methods P3M and P2NFFT.

To change the solver-specific parameters, there are solver-specific setter functions.
These are called fcs <solver> set <parameter> where <solver> is the abbreviation of
the solver (table 3.1) and parameter the name of the relevant parameter. If one wishes

25

parameter name description valid values

handle pointer to parameter containing struc-
ture

FCS (C) or type
(c ptr) (Fortran)

near field flag leave the near field calculations to the
library

true (6= 0) / false (0)

box a first vector describing the system box ∈ R3

box b second vector describing the system box ∈ R3

box c third vector describing the system box ∈ R3

offset offset of the lower front left corner from
0

∈ R3

periodicity periodicity of the system in each dimen-
sion (x,y,z)

true / false

total particles total amount of particles in the system ∈ N+

Table 3.7.: Parameters for fcs common set

to change all parameters of a solver, the use of fcs <solver> setup is advised. A list of
solver-specific parameters, that can be changed and possible values are available in the
chapters describing the solvers.

3.2.5. Tuning Step

Most of the methods need a tuning step in which internal data structures are created
according to the actual system that is simulated. Other methods need information about
the distribution of the particles within the system and between the processes. Therefore
the tuning step is mandatory. In order to tune the methods, the user has to call the
function fcs tune with the function call described in figure (15.3). The function calls
awaits several input parameters and is similar to the function call of fcs run described in
the following section. First parameter of the tuning is the handle, which was created in
fcs init (3.2.3) and then filled with fcs common set (3.2.4). The parameter n locp gives
the number of particles on the local process, which is identical to the length of the array
given as parameter charges. For the array containing the charges, an array with thrice
the length has to be supplied as parameter charges. As final parameter, the parameter
n maxlocp gives an estimation of the maximum number of particles being stored on the
local process before the next call of the tuning routine.

26

This routine is mandatory to be called, in order to grant a unified interface for the
library. Some methods, e.g. PEPC, do not need this tuning step. But to be able to
switch the methods within a code without the need to greatly modify the code again,
the tuning routine has to be called. If the user wants to use e.g. PEPC as well as e.g.
P2NFFT, he can use the same program (except for the method-specific setter routines),
when including the tuning routine.

3.2.6. Calculation Step

The calculation step is the centerpiece of the library. Within it, the actual calculation
of Coulomb interactions takes place. As mentioned in the description of tuning step,
the call to fcs run (fig. 15.4) is nearly the same, as for fcs tune (see 3.2.5). There are
two additional parameters, which are field and potential. The first is the array to which
the field data is added and has a size of thrice the number of local particles (n locp),
the latter is the array in which the corresponding potentials are saved and has a size
equal to the number of local particles (n locp). All the other parameters are equal to
the parameters of fcs tune (see above).

3.2.7. Clean Up Step

After the calculations are done, the memory allocated by the methods needs to be freed
again. This task is done by the function fcs destroy (fig. 15.5). As parameters only
the FCS object is needed, in order to free memory allocated in connection with it, since
the internal data structures of the methods are administrated by those. The call to
fcs destroy is not mandatory but the user is advised to call it, especially if he or she
wants to repeat the calculation with another method without restarting the program,
since it cannot be guaranteed that more then one method can be used simultaneously
without memory problems.

3.3. Error Handling

Within the ScaFaCoS library a FCSResult type is defined. With this type return values
and error messages of the methods and the interface routines are handled. The type
includes up to three pieces of information about error that have occurred during a call
to a ScaFaCoS function. These pieces are a return code, an error message and the source
of the error within the library. As return values the values given in table 3.5 can occur.
In order to simplify the error handling for the ScaFaCoS routines, the routines return
NULL as return value, instead of an allocated error object containing FCS SUCCESS as
return value. The other information contained in the error type gives more information
about the kind of error that occurred, e.g. if a method cannot handle a certain system
due to restrictions on periodicity, and where the error occurred within the library since
the error can happen in functions called inside the routine called by the user.
To get the information out of the error type, there are three functions for this task.

27

Their calls are shown in figures 15.6 to 15.8. Due to restrictions in Fortran the message
length in Fortran is capped to 256 characters.

3.4. Fortran Specifics

! Fortran
use i s o c b i n d i n g
character (kind = c char , len = 32) : : s t r i n g = ” t e s t s t r i n g ”
s t r i n g = trim (a d j u s t l (s t r i n g)) // c n u l l c h a r

Figure 3.4.: Example for string truncation for strings used with ScaFaCoS

In this section some advises are given for Fortran programmers. Since the Fortran
interface is a wrapper interface above the C version of the interface trying to stay as true
to the C interface as possible, some things have to be observed. First it is advised to use
the interoperable Fortran kinds delivered by the library, which are fcs integer kind isoc
for integer and fcs real kind isoc. With the usage of these kinds problems concerning the
interoperability of the values is avoided. Secondly strings have to be terminated with C
null characters and have to be trimmed to the correct length. An example how this can
be achieved is given in figure 3.4. A third difference from Fortran to C is that in the
Fortran interface wherever possible the logical type is used instead of an integer value
in C. This is true for every manual setter and getter connected to flags. In the parser
this exchange was not possible (see 3.5.4).

3.5. Further Functionality

This sections describes some of the functionality the ScaFaCoS library has, which exceeds
the pure calculation of Coulomb interactions. It also describes the output functions
within the library and the parser for parameters.

3.5.1. Near Field Solver

Should the near field solver be available to the user?

Within the library a near field solver for given near field potentials is included. Some of
the methods (P2NFFT and P3M) need to calculate separate near field interactions, which
is done by this solver. The solver uses a linked cell scheme for fast interaction calculation
and uses the sorting library to create and duplicate the particles (ghost-particles). It is
able to handle periodicity and linked cell sizes that are smaller than the cut-off radius.
With the near field flag described in section 3.2.4 the calculation of the near field portions
of the Coulomb interactions can be delegated to external routines. In order to do this the
methods which support this (currently P3M and P2NFFT) provide a functions which
can then be called from the user’s program to calculate the corresponding near field

28

portions of the Coulomb interactions (see figure 15.9 to 15.11). The aforementioned
functions are generic function that will calculate the according values for the chosen
method. It is possible to check if the chosen method is able to relegate the near field
calculation by use of fcs method has near (15.12).

3.5.2. Optional Results

It is possible to get additional results from the solver concerning the calculation. As
of now the only additional result to have is the system virial. It is possible that some
solvers add additional optional results in the future. Since now only the virial is available
here will be explained how to get the virial from the solvers. For that two functions are
needed, fcs require virial (15.15) and fcs get virial (15.16). With fcs require virial the
user activates or deactivates the calculation of the virial. If set to true, the virial is
activated, else it is not calculated. If it is calculated, the user can get the calculated
by the use of fcs get virial. For that he has to pass an allocated array of nine fcs float
values to the function.
Possibly in the next future other optional results will be implemented, if required by the
community.

3.5.3. Output of Interface Parameters

For debugging purposes it is possible to print out the content of the FCS object. This is
done by the use of the function fcs printContent (figure 15.13). The output shows the
current values of the parameters set within the FCS object. If no changes were made
to the solver-specific parameters, it shows the default values for them. The behavior of
the routine if used on a freshly created FCS object without set common parameters is
undefined.

3.5.4. Parser

To simplify the parameter input for programs basing on script file input, the ScaFaCoS
library offers a parser that allows to read in parameters from a string. The format of
the passed string must adhere to the example shown in figure 3.5, while the function call
can be seen in figure 15.14

s t r i n g = ”box a , 1 . 0 , 0 . 0 , 0 . 0 , n e a r f i e l d f l a g , 1 , pepc theta , 0 . 3 ”

Figure 3.5.: Example of a parser string setting the first box vector, the near field flag
and a method-specific parameter.

The format is an alteration of parameter name and value(s). In the example the first
parameter to be set is a generic one, so no prefix is needed and the parameter name is
box a. Since the first box vector needs three floating point values, these are given after
the parameter name, always separated by commas. After the final parameter value, the

29

next parameter name is expected, in the case of the example the parameter is another
generic one, the near field flag. Because this parameter needs only one integer value,
it given and immediately followed by the next parameter name. The last parameter
to be set is a solver-specific one, the parameter theta from the PEPC solver. Since
it is a PEPC-specific parameter, the solver name is added as a prefix, followed by the
parameter name. After it the parameter value follows, like with the generic parameters.
For Fortran users the advise, that every flag which is set with the parser, has to used
the C syntax which requires an integer value (0 for false, 1 for true) instead of .true. or
.false..

30

4. FMM – Fast Multipole Method

Parameters

- absrel: absolute or relative energy errors

0 = relative energy error 10^{-3} (default)

1 = absolute energy error deltaE

2 = relative energy error deltaE

- deltaE: relative or absolute energy error, depending on absrel

absrel = 1: absolute total energy error

absrel = 2: relative energy error, 10^{-1}...10^{-14}

- dipole_correction: type of dipole correction to use (explain!)

currently ignored (not handed over by interface)

-1 = no dipole correction

0 = standard dipole correction

1 = dipole correction activated

default value?

Box Shape / Periodicity

- open boundaries: full support for any box shape

- periodic or mixed boundaries: support limited to cubic boxes;

however, for mixed boundaries,

edges in non-periodic directions

may be shorter than periodic edges

Can Delegate Nearfield to MD: no

Bugs / Missing Features

- only backup version of virial tensor with periodic boundaries

- can we lift the requirements for periodic or mixed boundaries

to approximately cubic boxes, like for PEPC?

- does not compile with Intel compiler

31

5. MEMD – Maxwell Equation Molecular
Dynamics

MEMD is a young method for the calculation of electrostatics. Rather than directly
solving the Poisson equation, it performs a discrete quasi electrodynamics simulation on
a lattice. It comes with some benefits and some restrictions, which will be described
here and should be considered before using the algorithm.

5.1. Description of the method

In most algorithms, the electrostatic problem is formulated as the solution to Poisson’s
equation ∇2Φ = −4πρ. This elliptic partial differential equation requires a global solu-
tion in space, which is where the high computational cost of electrostatics arises. It can
however be seen as nothing but the static limit of full electrodynamics where the speed
of light approaches infinity, and the magnetic fields within the system have completely
vanished. If we therefore consider the Gauss law ∇E = 4πρ of the Maxwell equations,
we arrive at a solution of Poisson’s equation while only left with a set of hyperbolic
differential equations. The solution of these requires only local operations, no global
solution in space.

5.1.1. Equations of motion

Of course, full electrodynamics within a simulation are similarly costly, since the speed
of field propagations is several orders of magnitude higher than the typical speed of
charges within the system, requesting an unfeasably fine time discretization. However,
Maggs and Pasichnyk [9, 10] have shown that, in a Car-Parrinello manner, these degrees
of freedom can be brought closer by drastically reducing the wave propagation speed.
In the thermodynamic limit, the Coulomb interaction is fully recovered independently
of this propagation speed.

Denoting the particle masses with mi, their charges with qi, their coordinates and
momentum with ri and pi respectively, the equations of motion for the coupled system
of charges and fields read

33

mir̈i = −∂U
∂ri
− qiE + qivi ×B (5.1)

B =
1

c2
Θ̇ (5.2)

Ḋ = c2 ∇× (∇×B)− j

ε
(5.3)

Ḃ = −∇×D (5.4)

where ε(r) is the local dielectric constant, c the wave propagation speed (speed of
light), B the magnetic field, D = εE the electric field, Θ an additional degree of freedom
for the electric field (where ∇×Θ = 0), and j the electric current density.

5.1.2. Discretization in space

In this implementation, the given equations are dicretized in space on a regular lattice for
numerical evaluation. For the electric currents (and therefore the fields as well), a linear
interpolations scheme is introduced because it allows for arbitrary local changes of the
dielectric background constant ε(R). The gradient and curl operators are implemented
via finite differences. This linear interpolation leads to a larger numerical error, especially
on short ranges, as will be further explored in section 5.1.6.

5.1.3. Discretization in time

The MEMD algorithm is based on moving charges and wave propagation, so unlike all
other method in the ScaFaCoS library, it depends on the dynamics of the system. Most
notably on the time step of the Molecular Dynamics (MD) integrator and the resulting
particle speeds.

The calculation of the electric current and the propagation of the magnetic field are
discretized in time. Thus, a time step is required by the user and it should match the
integration time step of the simulation. If a different (non-MD) simulation includes the
ScaFaCoS library, the MEMD solver can be a problematic choice and should only be
considered if you know what you are doing.

To maintain the energy conservation feature of symplectic integrators, the field calcu-
lation within this algorithm features a time reversible scheme: First, the magnetic fields
are propagated for half a time step, then the electric fields are calculated, and finally
the magnetic fields are propagated another half time step.

5.1.4. Boundary conditions

A local algorithm offers the possibility for a real periodic three dimensional torus geom-
etry by simply stitching together the wave propagation of opposite box surfaces. This
however implies a real periodic geometry and does not have the possibility to manually
neglect the dipole term of the system, like e.g. Ewald-based methods do by omitting

34

the dipole term in Fourier space. Even worse, the dipole term of the unfolded coordi-
nate system is considered, since the history of the particle trajectories is stored in the
magnetic fields.

This implementation corrects for the unwanted dipole term by directly substracting
it, and therefore features metallic boundary conditions at infinity. Multipole terms of
higher order decay faster than 1/r3 and are of short ranged nature.

5.1.5. Calculation of the potential

The MEMD algorithm does not solve the Poisson equation but only updates the electric
field directly (see section 5.1.1). The electrostatic potential is never actually calculated.
If output of the potential is wanted, the MEMD algorithm will integrate over the field
strength at all particle positions

Φtotal =
1

2

∫
V

E ·DdV (5.5)

The potential energy within the magnetic fields are omitted, since the fields in this
algorithm are artificial and only their curl will contribute. This results in variations in
the energy since the magnetic fields act as an energy depot in the system, although the
total energy is conserved over time.

5.1.6. Error estimate

The main error of the MEMD algorithm stems from the lattice interpolation and is
proportional to the lattice size in three dimensions, which means ∆lattice ∝ a3.

Without derivation here, the algorithmic error is proportional to 1/c2, where c is the
adjustable wave propagation speed. From the stability criterion, this yields

∆MEMD = A · a3 +B · dt2/a2 (5.6)

This means that increasing the lattice will help the algorithmic error, as we can set the
wave propagation speed to a higher value. At the same time, it increases the interpolation
error at an even higher rate. Therefore, momentarily it is advisable to choose the lattice
with a rather fine mesh of approximately the size of the particles. The ideal wave
propagation can then be tuned by the method.

5.2. Systems suited for the algorithm

As stated in section 5.1.3, MEMD is a dynamic algorithm. It relies heavily on the system
moving slowly between calculations and requires a time step as parameter. It should
only be used to couple to an MD simulation with a symplectic integrator. With anything
else, you might run into unexpected difficulties. It also has to be taken into account that
for energy calculations, the results can vary significantly because of the energy stored
temporarily in the magnetic fields (see 5.1.5). The algorithm being dynamic also implies

35

that there should be no permanently fixed charges within the system. MEMD works with
electric currents, and a charge that does not move can produce unpredictable errors if
its magnetic field radiation relaxes to zero over time. If you must feature fixed particles,
try to keep them in a narrow potential minimum.

It is also mentioned in section 5.1.4 that MEMD directly substracts the system’s
dipole moment to deploy metallic boundary conditions at infinite distance. This works
fine unless the system is externally driven to create a particle flow (net electric current)
in one direction. The dipole moment will then diverge and the system needs to be
reinitialized regularly.

Generally, the simulated system

• should be propagated in an MD like manner.

• should be periodic in all dimensions.

• should be of cubic geometry.

• should not be very inhomogenous.

• should not have a net electric current.

• should not contain fixed charges.

• should run for some time to make up for the slow initialization procedure.

These conditions seem very restrictive, but they are given for most straight forward
MD simulations. And if given, the algorithm can compete with the other electrostatics
methods in this software package.

5.3. Solver-specific parameters

The tolerance parameters are common to all ScaFaCoS solvers. At the moment MEMD
only supports automatic tuning to reach the lowest possible error. This is typically in
the range of 10−3 for the RMS force error.

In addition, MEMD has the following, partly mandatory, parameters, which can be ad-
justed by the MEMD-specific functions described in the next section. Alternatively, you
can use the ScaFaCoS test program together with the optional command line argument
-c and a comma separated list of parameter settings, e.g., use

./scafacos_test memd systems/3d-periodic/cloud_wall.xml.gz \

-c tolerance_field,1e-3,mesh,16,timestep,0.01,lightspeed,0.05

• timestep (mandatory) – The time step (in simulation units) of the Molecular
Dynamics (MD) integrator. This is a mandatory parameter, since without it,
MEMD does not have a frame of reference for particle and fiel propagation speeds.

36

• mesh – The space discretization mesh size in one dimension. If not set, this is
automatically tuned via the minimal particle pair distance of the first system state.

• lightspeed – The propagation speed of the magnetic fields in the system. This
parameter is connected via a stability criterion to timestep and mesh, as explained
below this list.

• permittivity – The background permittivity ε of the system. Only two of the
parameters permittivity, temperature, and bjerrum_length can be set at the
same time, since they are mathematically dependent.

• temperature – The temperature of the system. This is important for the ther-
malization of the fields. Only two of the parameters permittivity, temperature,
and bjerrum_length can be set at the same time, since they are mathematically
dependent.

• bjerrum_length – The bjerrum length lB of the system’s dielectric background.
Only two of the parameters permittivity, temperature, and bjerrum_length

can be set at the same time, since they are mathematically dependent.

The three parameters timestep, mesh and lightspeed are connected via the stability
criterion for the algorithm. The condition that the propagation of the magnetic fields
has to be significantly larger than the speed of the particles leads to the relation

c� a

dt
(5.7)

where c is the propagation speed of the fields (light speed), a is the lattice spacing,
and dt is the time step. Usually, the time step is a fixed property. To achieve a good
performance with the algorithm, a rule of thumb would be to set the lattice spacing at
about the size of the particles (minimal distance), divide the box length by that, and
pick the closest power of two for the mesh size in the system. From the resulting lattice
spacing and the fixed time step, calculate the right hand fraction in equation (5.7) and
multiply it by 0.01 to get a lightspeed estimate for an appropriately stable algorithm
with minimal numerical error.

5.4. Solver-specific functions

• FCSResult fcs_memd_set_box_size(FCS handle,

fcs_float length_x, fcs_float length_y, fcs_float length_z);

FCSResult fcs_memd_set_total_number_of_particles(FCS handle,

fcs_int number_of_particles);

FCSResult fcs_memd_set_local_number_of_particles(FCS handle,

fcs_int number_of_particles);

Set system parameters, common for all methods.

37

• FCSResult fcs_memd_set_permittivity(FCS handle,

fcs_float epsilon);

FCSResult fcs_memd_set_temperature(FCS handle,

fcs_float temperature);

FCSResult fcs_memd_set_bjerrum_length(FCS handle,

fcs_float bjerrum);

Set the dielectric background parameters for the method. See section 5.3 for in-
structions.

• FCSResult fcs_memd_set_time_step(FCS handle,

fcs_float timestep);

FCSResult fcs_memd_set_mesh_size_1D(FCS handle,

fcs_int mesh_size);

FCSResult fcs_memd_set_speed_of_light(FCS handle,

fcs_float lightspeed);

Set the tuning parameters for the method. See section 5.3 for instructions.

• FCSResult fcs_memd_set_init_flag(FCS handle,

fcs_int flagvalue);

If the system changes major parameters, the initial solution routine will be called
automatically. But if you add small particle numbers or change particle positions
rapidly, this function will tell MEMD to re-initialize the system and can prevent
a crash.

5.5. Known bugs or missing features

Since the algorithm’s main strength is its locality and with it the possibility to apply
spatially varying dielectric background properties, the following missing features have
not been included in the ScaFaCoS library.

• The initial solution can theoretically be calculated with one of the alternative
methods. This would speed up the algorithm significantly. It has not been imple-
mented yet since one would need to distinguish between a constant and varying
dielectric background.

• For a constant dielectric background, an option could also be added to interpolate
the charges over a wider area and calculate the short-range part of the electrostatic
interaction seperately. This would increase the precision but would again not be
compatible with varying dielectric properties.

38

6. MMM1D

39

7. MMM2D

41

8. Ewald

The well-known Ewald formula for the computation of (??) splits the electrostatic po-
tential φ into the following parts

φ = φreal + φreci + φself + φdipo, (8.1)

where the contribution from real space φreal, reciprocal space φreci, the self-energy φself

and the dipole correction φdipo are given by

φreal(xj) =
∑
r∈Z3

M∑
l=1

l 6=j for r=0

ql
erfc(α‖xj − xl + rB‖2)
‖xj − xl + rB‖2

,

φreci(xj) =
1

πB

∑
k∈Z3\{0}

e−π
2‖k‖22/(αB)2

‖k‖22

M∑
l=1

qle
−2πik(xj−xl)/B , (8.2)

φself(xj) = −2qj
α√
π
,

φ̃dipo =
2π

3V

(M∑
l=1

qlxl

)2

.

Thereby, the complementary error function is defined by erfc(z) = 2√
π

∫∞
z e−t

2
dt. Choos-

ing optimal parameters, Ewald summation scales as O(M3/2) [8].

43

9. P2NFFT – Particle-Particle NFFT

P2NFFT is a common framework for almost all FFT based fast Coulomb solvers. The
computation of Coulomb interactions is split into a short range interaction (near field)
and a long range interaction (far field). For sake of simplicity, we describe the idea of
P2NFFT only for the one-dimensional case. In addition, we do not stress all the details,
that arise from the difference between periodic and non-periodic boundary conditions.
More detailed descriptions of the algorithms can be found in [11].

9.1. Description of the Method

As usual, we assume M charges ql at position rl. The potentials φj at position rj are
given by

φj =

M∑′

l=1

ql
1

rjl
,

and the Electrostatic fields Ej at position rj are given by

Ej =

M∑′

l=1

ql∇
1

rjl
=

M∑′

l=1

ql
rl
rjl

.

Hereby, the distance between two particles at positions rj and rl is given by rjl := |rj−rl|.

9.1.1. Periodic boundary conditions

In this section we present a straightforward method, that accelerates the traditional
Ewald summation technique by NFFT. This combination was first presented in [7]
and is very similar to the FFT-accelerated Ewald sums, namely, the so-called particle-
particle particle-mesh (P3M), particle-mesh Ewald (PME) and smooth particle-mesh
Ewald (SPME), see also [5]. Additionally we will see, that the accelerated Ewald sum-
mation can be reinterpreted into a method very similar to our fastsum Algorithm ??.

In order to overcome this increase in time we apply the NFFT for the calculation of the
reciprocal-space potential φreci and we obtain a method similar as our fast summation
method. To this end, we compute the Fourier transformed charge density

S(k) =
M∑
l=1

qle
+2πikxl/B

45

by NFFTà and after truncation of the sum (8.2) we obtain by NFFT

φreci(xj) ≈
1

πB

∑
k∈IN\{0}

e−π
2‖k‖22/(αB)2

‖k‖22
S(k)e−2πikxj/B .

9.1.2. Calculation of the Potentials

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

=

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

+

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

1
r

1
r −R(r) R(r)= +

Figure 9.1.: Splitting of Coulomb potential into near field (blue) and far field (red).

φ(rj) =

M∑′

l=1

ql
rjl

= R(0) +

M∑′

l=1

ql

(
1

rjl
−R(rjl)

)
−

M∑
l=1

qlR(rjl) , j = 1, . . . ,M

R(r) ≈
N/2−1∑
k=−N/2

R̂ke
−2πikr

M∑
l=1

qlR(rjl) ≈
M∑
l=1

ql

N/2−1∑
k=−N/2

R̂ke
−2πikrjl =

N/2−1∑
k=−N/2

R̂k

(
M∑
l=1

qle
+2πikrl

)
e−2πikrj

Near field interactions are computed with the ScaFaCoS near field solver, but can also
be redirected to any other the near field solver.

Far field interactions are computed via convolution in Fourier space. With the appro-
priate choice of window functions and convolutions in Fourier space, P2NFFT becomes
the P3M (default for fully periodic boundaries), the NFFT based fast summation (de-
fault for fully non-periodic boundaries) or almost any other FFT based fast Coulomb
solver like PME, SPME, Gaussian split Ewald or plain Ewald summation. Note, that
an uniform particle distribution is required in order to achieve the typical O(N logN)
scaling.

9.1.3. Calculation of the Electrostatic Fields

9.1.4. Calculation of the Virial

46

9.2. Features

Periodicity: Only fully periodic and fully non-periodic boundaries are supported.

Box shape: Only cubic box shape is supported.

Autotuning: For fully periodic boundaries, the parameters can be automatically tuned
when a required tolerance in the absolute rms field error is provided. For fully non-
periodic boundaries, the parameters are more or less intelligently guessed when a
required tolerance in the absolute potential error is provided.

Delegate near-field: Yes.

Virial: Yes for fully non-periodic boundaries. For fully periodic boundaries we only
compute an approximation of the diagonal of the virial tensor, i.e., all entries of
the diagonal are set equal to one third of the total energy.

9.3. Solver-specific Parameters

The tolerance parameters are common to all ScaFaCoS solvers. At the moment P2NFFT
only supports automatic parameter tuning for the following tolerance types.

• tolerance_type - The type of error that we want to check for. Allowed values
are FCS_TOLERANCE_TYPE_FIELD (absolute rms error in the fields) for fully peri-
odic boundaries and FCS_TOLERANCE_TYPE_POTENTIAL (absolute rms error in the
potentials) for non-periodic boundaries.

• tolerance - The allowed tolerance of the error. Type of the error is given by
tolerance_type. If the required tolerance can’t be achieved with the given pa-
rameters, P2NFFT aborts with an error message.

In addition, P2NFFT offers the following parameters, which can be adjusted by the
P2NFFT-specific functions described in the next section. Alternatively, you can use the
ScaFaCoS test program together with the optional command line argument -c and a
comma separated list of parameter settings, e.g., use

./scafacos_test p2nfft systems/3d-periodic/cloud_wall.xml.gz \

-c tolerance_field,1e-4,p2nfft_r_cut,4.5,pnfft_N,16,16,16,pfft_patience,0

in order to run the test program with a near field cut off range of 4.5 and a sloppy
planned FFT of size 16× 16× 16 up to tolerance 10−4 in the fields.

• p2nfft_r_cut - Absolute cutoff distance of the near field. Can be automatically
tuned. Feasible values are in the order of the mean free path between the two
nearest charges. p2nfft_r_cut has to be less than half the smallest simulation
box length. When p2nfft_r_cut is chosen too small, the errors of the algorithm
become large, the required accuracy might not be achieved, or the grid has to be

47

chosen very large, which will slow down the algorithm. When p2nfft_r_cut is
chosen too large, the algorithm might become slow as most computation is done
in the near field region. This parameter corresponds to r_cut of the P3M solver.

• p2nfft_epsI - Relative cutoff distance of the near field. P2NFFT scales the orig-
inal box size into a cube of side length 1. For fully periodic boundary conditions
this corresponds to a simple scaling by the box size. However, the scaling is more
complicated if non-periodic boundary conditions are involved. Application of the
same scaling factor on r_cut gives epsI. Feasible values are any positive floats
that fulfill epsI < 0.5.

• p2nfft_epsB - Regularization border for P2NFFT with non-periodic boundary
conditions. This parameter corresponds to the rescaled system into a unit cube of
side length 1. Feasible values are any positive floats that fulfill epsI+ epsB < 0.5.
This parameter does not have any effect for fully periodic boundary conditions.
Default value is epsB := epsI.

• p2nfft_alpha - Ewald splitting parameter. Can be automatically tuned. This
parameter corresponds to alpha of the P3M solver.

• p2nfft_cao - Charge assignment order. Can be automatically tuned. This param-
eter mostly corresponds to cao of the P3M solver. However, note that this is only
a wrapper that sets pnfft_m to the value (p2nfft_cao+1)/2 (division rounded
down). Therefore, P2NFFT will always use an even charge assignment order.

• p2nfft_intpol_order - P2NFFT uses interpolation tables to speed up the re-
peated computation of the near field correction. The order of interpolation is
given by intpol_order. Feasible values are −2 (approximation of the error func-
tion according to [4, eq. (7.1.26)], which yields an error of 1.5× 10−7), −1 (direct
evaluation of the error function), 0 (constant interpolation), 1 (linear interpola-
tion), 2 (quadratic interpolation) and 3 (cubic interpolation). Default value is
3.

• p2nfft_reg_near - Choose between the two near field regularization methods
for non-periodic boundaries. Feasible values are 0 (Fourier coefficients have been
precomputed via CG iteration, only available for some sets of parameters) and 1
(Regularization with two-point Taylor polynomials). Default value is 0, if possible.

• p2nfft_reg_near_name (alternative: p2nfft_reg_near) - Choose between the
two regularization methods for non-periodic boundaries. Feasible values are cg

(Fourier coefficients have been precomputed via CG iteration, only available for
some sets of parameters) and t2p (Regularization with two-point Taylor polyno-
mials). Default is cg, if possible.

• p2nfft_reg_far - Choose between the available regularization methods at the
far field boundary for non-periodic boundaries. Feasible values are 0 (Fourier

48

coefficients have been precomputed via CG iteration, only available for some sets
of parameters and only available in combination with the flag rad_cg for near field
regularization), 1 (Regularization with two-point Taylor polynomials and explicitly
chosen constant continuation value), and 2 (Regularization with two-point Taylor
polynomials and implicitly chosen constant continuation value). Default value is
2.

• p2nfft_reg_far_name (alternative: p2nfft_reg_far) - Choose between the two
regularization methods for non-periodic boundaries. Feasible values are rad_cg

(radial regularization based on the cg near field regularization, only available for
some sets of parameters), rad_t2p_sym (radial regularization with symmetric two-
point Taylor polynomial), rad_t2p_ec (radial regularization with two-point Taylor
polynomial and explicitly chosen constant continuation value), rad_t2p_ic (radial
regularization with two-point Taylor polynomial and implicitly chosen constant
continuation value), rec_t2p_sym (radial regularization with symmetric two-point
Taylor polynomial), rec_t2p_ec (radial regularization with two-point Taylor poly-
nomial and explicitly chosen constant continuation value), and rec_t2p_ic (radial
regularization with two-point Taylor polynomial and implicitly chosen constant
continuation value). Default value is rad_t2p_ic.

• p2nfft_c - The constant continuation value of the far field regularization. This
parameter only takes affect, if far field regularization rad_t2p_ec or rec_t2p_ec

is enabled. Feasible values are any floating point numbers. Default value is 0.0.

• p2nfft_p - The degree of the two-point Taylor polynomial. This parameter only
takes affect, if regularization t2p has been enabled. Feasible values are any integers
between 1 and 16. Default value is 7.

• p2nfft_virial - Decide if the computation of the virial should be included in
P2NFFT. Feasible values are 0 (disable virial computation), or any other integer
(enable virial computation). Default value is 0 (disable virial computation).

• p2nfft_ignore_tolerance - On default, P2NFFT aborts with an error message,
if the required error tolerance can not be reached. This flag disables the check for
accuracy and gives the possibility to run P2NFFT with any set of parameters. It
is intended for very experienced users that tune all parameters manually. Default
value is 0 (abort if tolerance check fails). Any other value disables the tolerance
check.

9.3.1. PNFFT-specific Parameters

• pnfft_N (acronym: p2nfft_grid) - Size of the FFT grid. Can be automatically
tuned. Feasible values are in the order of M1/3, i.e., one grid point for each particle.
The grid size may be any positive integer, but powers of two are recommended.
The larger the grid, the smaller the error, but also the higher the memory and

49

computational requirements of the algorithm. This parameter corresponds to the
FFT grid size (grid) of the P3M solver.

• pnfft_n (acronym: p2nfft_oversampled_grid) - Size of the oversampled FFT
grid. Can be automatically tuned. Especially for non-periodic boundaries it is
necessary to introduce oversampling to reduce the aliasing error. Feasible values
are any integer n ≥ N. Default value is N for fully periodic boundaries and 2N for
fully non-periodic boundaries.

• pnfft_window (alternative: pnfft_window_name) - NFFT window function. Feasi-
ble values are 0 (Kaiser-Bessel window), 1 (Gaussian window), 2 (B-spline window),
3 (Sine Cardinal window - Fourier transform of the B-spline window) and 4 (win-
dow function based on the modified Bessel function of first kind - Fourier transform
of the Kaiser-Bessel window). Default value is 2 (B-spline). Recommended values
are 0 (Kaiser-Bessel) for fully non-periodic boundaries and 2 (B-spline) for fully
periodic boundaries.

• pnfft_window_name (alternative: pnfft_window) - Name of the NFFT window
function. Feasible values are kaiser (Kaiser-Bessel window), gaussian (Gaus-
sian window), bspline (B-spline window), sinc (Sine Cardinal window - Fourier
transform of the B-spline window) and bessel_i0 (window function based on
the modified Bessel function of first kind - Fourier transform of the Kaiser-Bessel
window). Default value is bspline. Recommended values are kaiser for fully
non-periodic boundaries and bspline for fully periodic boundaries.

• pnfft_m (see also: p2nfft_cao) - Real space cutoff of the window function. The
number of grid points that are influenced by a charged particle. Can be automat-
ically tuned. Allowed values are any positive integers. In most cases m is chosen
between 1 (low precision) and 16 (very high precision).
Note: Due to historical reasons, this parameter corresponds to one half
of the charge assignment order (cao) of the P3M solver!

• pnfft_intpol_order - PNFFT uses interpolation tables to speed up the repeated
evaluation of the window functions. The integer pnfft_intpol_order gives the
interpolation order. Feasible values are −1 (direct evaluation of window func-
tion without interpolation), 0, (constant interpolation), 1 (linear interpolation),
2 (quadratic interpolation) and 3 (cubic interpolation). Default value is 3 (cubic
interpolation).

• pnfft_pre_phi_hat - Flag to enable precomputed Fourier coefficients for faster
computation of the diagonal matrix in the NFFT algorithm. Feasible values are 0
(turn off pre-computation), or any other integer pnfft_pre_phi_hat6= 0 (enable
pre-computation). Default value is 1 (enable pre-computation).

• pnfft_fg_psi - Set PNFFT flag PNFFT_FG_PSI. Only Gaussian window function
we can use Fast Gaussian Gridding in order to speed up the evaluation of the

50

window function. Feasible values are 0 (switch Fast Gaussian gridding off), or any
other integer pnfft_fg_psi6= 0 (use Gaussian gridding). Default value is 0 (since
B-Spline is the default window function).

• pnfft_fft_in_place - Set PNFFT flag PNFFT_FFT_IN_PLACE. This causes the
PNFFT planner to use in-place-FFTs, which saves about half of the memory for
FFT but may sacrifices some performance. Feasible values are 0 (call out-of-
place FFTs), or any other integer pnfft_fft_in_place6= 0 (call in-place-FFTs).
Default value is pnfft_fft_in_place= 0 (call out-of-place FFTs).

• pnfft_sort_nodes - Set PNFFT flag PNFFT_SORT_NODES. Chooses whether to call
a local sort before the interpolation step. This may result in better cache locality.
Feasible values are 0 (omit local sort), or any other integer pnfft_sort_nodes6= 0
(sort before interpolation). Default value is pnfft_sort_nodes= 0 (omit local
sort).

• pnfft_interlaced - Set PNFFT flag PNFFT_INTERLACED. Chooses whether PNFFT
uses interlacing. This gives better accuracy at the price of more operations. Fea-
sible values are 0 (omit interlacing), or any other integer pnfft_interlaced6= 0
(enable interlacing). Default value is pnfft_interlaced= 0 (omit interlacing).

• pnfft_grad_ik - Set PNFFT flag PNFFT_GRAD_IK. Chooses whether PNFFT com-
putes the gradient through multiplication with −2πik in Fourier space. This gives
better accuracy in comparison to analytic differentiation at the price of more oper-
ations. Especially, we have to call four backward FFTs (instead of one for analytic
differentiation). Feasible values are 0 (use analytic differentiation), or any other
integer pnfft_grad_ik6= 0 (use Fourier space differentiation). Default value is
pnfft_grad_ik= 0 (use analytic differentiation).

• pnfft_pre_psi - Set PNFFT flag PNFFT_PRE_PSI. Tensor product based pre-
computation of the window function. This option reduces the amount of re-
peated evaluations of the window function at the cost of 6(2m + 1)M floats (or
3(2m+ 1)M floats if the gradient is not needed). Since the this kind of precompu-
tation depends on the nodes xj , it must be performed during fcs_run instead of
fcs_tune. Feasible values are 0 (switch off precomputation), or any other integer
pnfft_pre_psi6= 0 (switch on precomputation). Default value is 0 (no precompu-
tation). This flag can not be used together with pnfft_pre_full_psi.

• pnfft_pre_fg_psi - Set PNFFT flags PNFFT_FG_PSI and PNFFT_PRE_PSI, i.e.,
use Fast Gaussian Gridding for tensor product based precomputation. Since the
this kind of precomputation depends on the nodes xj , it must be performed dur-
ing fcs_run instead of fcs_tune. Feasible values are 0 (switch off precomputa-
tion), or any other integer pnfft_pre_fg_psi6= 0 (switch on precomputation).
Default value is 0 (no precomputation). This flag can not be used together with
pnfft_pre_full_psi.

51

• pnfft_pre_full_psi - Set PNFFT flag PNFFT_PRE_FULL_PSI. Full precomputa-
tion of the window function. This option reduces the amount of repeated evalua-
tions of the window function at the cost of 4(2m+1)3M floats (or (2m+1)3M floats
if the gradient is not needed). Since the this kind of precomputation depends on
the nodes xj , it must be performed during fcs_run instead of fcs_tune. Feasible
values are 0 (switch off precomputation), or any other integer pnfft_pre_psi6= 0
(switch on precomputation). Default value is 0 (no precomputation). This flag
can not be used together with pnfft_pre_full_psi.

• pnfft_pre_full_fg_psi - Set PNFFT flags PNFFT_FULL_FG_PSI and PNFFT_PRE_FULL_PSI,
i.e., use Fast Gaussian Gridding for full window function precomputation. Since
the this kind of precomputation depends on the nodes xj , it must be performed
during fcs_run instead of fcs_tune. Feasible values are 0 (switch off precompu-
tation), or any other integer pnfft_pre_full_fg_psi6= 0 (switch on precomputa-
tion). Default value is 0 (no precomputation). This flag can not be used together
with pnfft_pre_psi.

• pnfft_real_f - Set PNFFT flag PNFFT_REAL_F. Normally, PNFFT works on com-
plex valued inputs. This flag enables some optimizations for real valued inputs,
e.g., substituting complex additions and multiplications with real ones. However,
this comes at the price of strided memory access and does not always improve
performance. Feasible values are 0 (use complex operations), or any other in-
teger pnfft_real_f6= 0 (use real operations where possible). Default value is
pnfft_real_f= 0 (use complex operations).

9.3.2. PFFT-specific Parameters

• pfft_patience - Similar to FFTW, the PFFT library splits the computation of
parallel FFT into a more or less time consuming planning step and a fast execu-
tion step. The time spent for planning can be adjusted by the pfft_patience

flag. Feasible values are 0 (plan PFFT with PFFT_ESTIMATE), 1 (plan PFFT
with PFFT_MEASURE), 2 (plan PFFT with PFFT_PATIENT) and 3 (plan PFFT with
PFFT_EXHAUSTIVE). All other values raise an error. Default value is 1 (PFFT_MEASURE).

• pfft_tune - The PFFT library uses FFTW for computing serial FFTs combined
with serial transpositions. Sometimes its better to perform the FFT and transpo-
sition in two separate steps, but the FFTW planner does not recognize. For value
pfft_tune= 0 PFFT uses the FFTW plan as it is. For any other value, PFFT
calls an additional planner in order to decide if performance gets better when the
local FFT and transposition is performed in two separate steps. For large local
array sizes this tuning gets very time consuming. Default value is 0 (tuning turned
off).

• pfft_preserve_input - PFFT can chose between a larger set of algorithms, if it
is allowed to overwrite the input array. Feasible values are 0 (PFFT is allowed

52

to destroy input), or any other integer pfft_preserve_input6= 0 (PFFT is not
allowed to destroy input). Default value is 0 (PFFT is allowed to destroy input).

9.4. Solver-specific Functions

• FCSResult fcs_p2nfft_set_r_cut(FCS handle, fcs_float r_cut);

FCSResult fcs_p2nfft_get_r_cut(FCS handle, fcs_float* r_cut);

FCSResult fcs_p2nfft_set_r_cut_tune(FCS handle);

Set/restore/retrieve absolute near field cutoff radius.

• FCSResult fcs_p2nfft_set_epsI(FCS handle, fcs_float eps_I);

FCSResult fcs_p2nfft_get_epsI(FCS handle, fcs_float* eps_I);

FCSResult fcs_p2nfft_set_epsI_tune(FCS handle);

Set/restore/retrieve relative near field cutoff radius.

• FCSResult fcs_p2nfft_set_epsB(FCS handle, fcs_float eps_B);

FCSResult fcs_p2nfft_get_epsB(FCS handle, fcs_float* eps_B);

FCSResult fcs_p2nfft_set_epsB_tune(FCS handle);

Set/restore/retrieve relative far field regularization border.

• FCSResult fcs_p2nfft_set_alpha(FCS handle, fcs_float alpha);

FCSResult fcs_p2nfft_get_alpha(FCS handle, fcs_float* alpha);

FCSResult fcs_p2nfft_set_alpha_tune(FCS handle);

Set/restore/retrieve Ewald splitting parameter.

• FCSResult fcs_p2nfft_set_interpolation_order(

FCS handle, fcs_int intpol_order);

FCSResult fcs_p2nfft_get_interpolation_order(

FCS handle, fcs_int* intpol_order);

Set/retrieve interpolation order of near field correction (optional, default = 3).

• FCSResult fcs_p2nfft_set_regularization(FCS handle, fcs_int reg);

FCSResult fcs_p2nfft_get_regularization(FCS handle, fcs_int* reg);

FCSResult fcs_p2nfft_set_regularization_by_name(

FCS handle, char* reg_name);

Set/retrieve the near field regularization by number or name (default = 0). Feasible
values are 0 ("cg") and 1 ("t2p").

• FCSResult fcs_p2nfft_set_p(FCS handle, fcs_int p);

FCSResult fcs_p2nfft_get_p(FCS handle, fcs_int* p);

FCSResult fcs_p2nfft_set_p_tune(FCS handle);

Set/restore/retrieve polynomial degree of two-point Taylor regularization.

53

• FCSResult fcs_p2nfft_require_virial(

FCS handle, fcs_int require_virial);

Enable virial computation (optional, default = 0).

FCSResult fcs_p2nfft_get_virial(FCS handle, fcs_float* virial);

Retrieve virial (optional, default)

FCSResult fcs_p2nfft_virial_is_active(

FCS handle, fcs_int* yes_or_no);

Check if virial computation is enabled.

• FCSResult fcs_p2nfft_set_ignore_tolerance(

FCS handle, fcs_int set_ignore_tolerance);

FCSResult fcs_p2nfft_get_ignore_tolerance(

FCS handle, fcs_int* set_ignore_tolerance);

Set/retrieve flag for disabling the accuracy check (default = 0).

• FCSResult fcs_p2nfft_set_grid(

FCS handle, fcs_int N0, fcs_int N1, fcs_int N2);

FCSResult fcs_p2nfft_get_grid(

FCS handle, fcs_int* N0, fcs_int* N1, fcs_int* N2);

FCSResult fcs_p2nfft_set_grid_tune(FCS handle);

Set/restore/retrieve FFT grid size.

• FCSResult fcs_p2nfft_set_oversampled_grid(

FCS handle, fcs_int n0, fcs_int n1, fcs_int n2);

FCSResult fcs_p2nfft_get_oversampled_grid(

FCS handle, fcs_int* n0, fcs_int* n1, fcs_int* n2);

FCSResult fcs_p2nfft_set_oversampled_grid_tune(FCS handle);

Set/restore/retrieve oversampled FFT grid size.

• FCSResult fcs_p2nfft_set_cao(FCS handle, fcs_int cao);

FCSResult fcs_p2nfft_get_cao(FCS handle, fcs_int* cao);

FCSResult fcs_p2nfft_set_cao_tune(FCS handle);

Set/restore/retrieve real space cutoff of window function.

9.4.1. PNFFT-specific Functions

• FCSResult fcs_p2nfft_set_pnfft_N(

FCS handle, fcs_int N0, fcs_int N1, fcs_int N2);

FCSResult fcs_p2nfft_get_pnfft_N(

FCS handle, fcs_int* N0, fcs_int* N1, fcs_int* N2);

54

FCSResult fcs_p2nfft_set_pnfft_N_tune(FCS handle);

Set/restore/retrieve FFT grid size.

• FCSResult fcs_p2nfft_set_pnfft_n(

FCS handle, fcs_int n0, fcs_int n1, fcs_int n2);

FCSResult fcs_p2nfft_get_pnfft_n(

FCS handle, fcs_int* n0, fcs_int* n1, fcs_int* n2);

FCSResult fcs_p2nfft_set_pnfft_n_tune(FCS handle);

Set/restore/retrieve oversampled FFT grid size.

• FCSResult fcs_p2nfft_set_pnfft_window(

FCS handle, fcs_int window);

FCSResult fcs_p2nfft_get_pnfft_window(

FCS handle, fcs_int* window);

FCSResult fcs_p2nfft_set_pnfft_window_by_name(

FCS handle, char* window_name);

Set/retrieve pnfft_window by number or name. (optional, default = 1). Feasi-
ble values are 0 ("gaussian"), 1 ("bspline"), 2 ("sinc"), 3 ("kaiser") and 4
("bessel_i0").

• FCSResult fcs_p2nfft_set_pnfft_m(FCS handle, fcs_int m);

FCSResult fcs_p2nfft_get_pnfft_m(FCS handle, fcs_int* m);

FCSResult fcs_p2nfft_set_pnfft_m_tune(FCS handle);

Set/restore/retrieve real space cutoff of window function.

• FCSResult fcs_p2nfft_set_pnfft_interpolation_order(

FCS handle, fcs_int intpol_order);

FCSResult fcs_p2nfft_get_pnfft_interpolation_order(

FCS handle, fcs_int* intpol_order);

Set/retrieve pnfft_intpol_order (optional, default = 3).

• FCSResult fcs_p2nfft_set_pnfft_pre_phi_hat(

FCS handle, fcs_int yes_or_no);

FCSResult fcs_p2nfft_get_pnfft_pre_phi_hat(

FCS handle, fcs_int* yes_or_no);

Set/retrieve flag pnfft_pre_phi_hat (optional, default = 0).

• FCSResult fcs_p2nfft_set_pnfft_fg_psi(

FCS handle, fcs_int yes_or_no);

FCSResult fcs_p2nfft_get_pnfft_fg_psi(

FCS handle, fcs_int* yes_or_no);

Set/retrieve flag pnfft_fg_psi (optional, default = 0).

55

• FCSResult fcs_p2nfft_set_pnfft_fft_in_place(

FCS handle, fcs_int yes_or_no);

FCSResult fcs_p2nfft_get_pnfft_fft_in_place(

FCS handle, fcs_int* yes_or_no);

Set/retrieve flag pnfft_fft_in_place (optional, default = 0).

• FCSResult fcs_p2nfft_set_pnfft_sort_nodes(

FCS handle, fcs_int yes_or_no);

FCSResult fcs_p2nfft_get_pnfft_sort_nodes(

FCS handle, fcs_int* yes_or_no);

Set/retrieve flag pnfft_sort_nodes (optional, default = 0).

• FCSResult fcs_p2nfft_set_pnfft_interlaced(

FCS handle, fcs_int yes_or_no);

FCSResult fcs_p2nfft_get_pnfft_interlaced(

FCS handle, fcs_int* yes_or_no);

Set/retrieve flag pnfft_interlaced (optional, default = 0).

• FCSResult fcs_p2nfft_set_pnfft_grad_ik(

FCS handle, fcs_int yes_or_no);

FCSResult fcs_p2nfft_get_pnfft_grad_ik(

FCS handle, fcs_int* yes_or_no);

Set/retrieve flag pnfft_grad_ik (optional, default = 0).

• FCSResult fcs_p2nfft_set_pnfft_pre_psi(

FCS handle, fcs_int yes_or_no);

FCSResult fcs_p2nfft_get_pnfft_pre_psi(

FCS handle, fcs_int* yes_or_no);

Set/retrieve flag pnfft_pre_psi (optional, default = 0).

• FCSResult fcs_p2nfft_set_pnfft_pre_fg_psi(

FCS handle, fcs_int yes_or_no);

FCSResult fcs_p2nfft_get_pnfft_pre_fg_psi(

FCS handle, fcs_int* yes_or_no);

Set/retrieve flag pnfft_pre_fg_psi (optional, default = 0).

• FCSResult fcs_p2nfft_set_pnfft_pre_full_psi(

FCS handle, fcs_int yes_or_no);

FCSResult fcs_p2nfft_get_pnfft_pre_full_psi(

FCS handle, fcs_int* yes_or_no);

Set/retrieve flag pnfft_pre_full_psi (optional, default = 0).

• FCSResult fcs_p2nfft_set_pnfft_pre_full_fg_psi(

FCS handle, fcs_int yes_or_no);

56

FCSResult fcs_p2nfft_get_pnfft_pre_full_fg_psi(

FCS handle, fcs_int* yes_or_no);

Set/retrieve flag pnfft_pre_full_fg_psi (optional, default = 0).

9.4.2. PFFT-specific Functions

• FCSResult fcs_p2nfft_set_pfft_patience(

FCS handle, fcs_int pfft_patience_flag);

FCSResult fcs_p2nfft_get_pfft_patience(

FCS handle, fcs_int* pfft_patience_flag);

FCSResult fcs_p2nfft_set_pfft_patience_by_name(

FCS handle, char* patience_name);

Set/retrieve flag pfft_patience by number or name (optional, default = 1). Fea-
sible values are 0 (estimate), 1 (measure), 2 (patient) and 3 (exhaustive).

• FCSResult fcs_p2nfft_set_pfft_preserve_input(

FCS handle, fcs_int yes_or_no);

FCSResult fcs_p2nfft_get_pfft_preserve_input(

FCS handle, fcs_int* yes_or_no);

Set/retrieve flag pfft_preserve_input (optional, default = 0).

• FCSResult fcs_p2nfft_set_pfft_tune(

FCS handle, fcs_int yes_or_no);

FCSResult fcs_p2nfft_get_pfft_tune(

FCS handle, fcs_int* yes_or_no);

Set/retrieve flag pfft_tune (optional, default = 0).

57

10. P3M – Particle-Particle Particle-Mesh
Ewald

10.1. Features

Periodicity: Only fully periodic boundaries are supported.

Box shape: Any orthorhombic box shape is supported.

Autotuning: The parameters can be automatically tuned when a required tolerance in
the absolute rms field error is provided.

Delegate near-field: Yes.

Virial: ?

10.2. Solver-specific Parameters

• tolerance_field The allowed tolerance of the absolute rms error in the fields.
If the required tolerance can’t be achieved with the given parameters, the tuning
is aborted. Feasible values depend on the system that is computed. In an MD
simulation with a thermostat, this should be about an order of magnitude less
than the forces generated by the thermostat.

• r_cut Cutoff distance of the near field. Can be automatically tuned. Feasible
values are in the order of the mean free path between charges. r_cut has to
be less than half the smallest simulation box length. When r_cut is chosen too
small, the errors of the algorithm become large, the required accuracy might not
be achieved, or the grid has to be chosen very large, which will slow down the
algorithm. When r_cut is chosen too large, the algorithm might become slow as
most computation is done in the badly scaling near field region.

• grid Size of the grid. Can be automatically tuned. Feasible values are in the order

of N
1
3 , i.e. a grid point for each particle. The minimal grid size is 4, the maximal

grid size is 512. The larger the grid, the smaller the error, but also the higher the
memory and computational requirements of the algorithm.

• cao “Charge assignment order”: The number of points in each direction that the
charge gets smeared out to. Can be automatically tuned. Allowed values are

59

between 1 and 7. The larger cao, the smaller the error, but also the higher the
computational cost of the algorithm.

• alpha Ewald splitting parameter. Should be automatically tuned. Set this manu-
ally only when you know what you are doing.

60

11. PEPC – Pretty Efficient Parallel
Coulomb Solver

Implementation of a highly scalable parallel Barnes-Hut-Treecode for open and (mixed)
periodic boundary conditions

The oct-tree method was originally introduced by Josh Barnes and Piet Hut in the mid
1980s to speed up astrophysical N-body simulations with long range interactions[PEPC-1].
Their idea was to use successively larger multipole-groupings of distant particles to re-
duce the computational effort in the force calculation from the usual O(N2) operations
needed for brute-force summation to a more amenable O(N logN). Though mathe-
matically less elegant than the Fast Multipole Method (see Section 4), the Barnes-Hut
algorithm is well suited to dynamic, nonlinear problems and can be combined with
multiple-timestep integrators.

The PEPC project[PEPC-2],[PEPC-3] (Pretty Efficient Parallel Coulomb Solver) is a
public tree code that has been developed at Jülich Supercomputing Centre since the early
2000s. It is a non-recursive version of the Barnes-Hut algorithm, using a level-by-level
approach to both tree construction and traversals.

The parallel version is a hybrid MPI/PThreads implementation of the Warren-Salmon
’Hashed Oct-Tree’ scheme, including several variations of the tree traversal routine - the
most challenging component in terms of scalability.

Common capabilities

Periodicity: Open, periodic, or mixed boundaries are supported. The box shape is not
limited by the chosen periodicity. The potential and field contribution of peri-
odic boundaries are computed using a fast converging renormalization approach
borrowed from the FMM, see [PEPC-4] for details.

Box shape: Any (triclinic) box shape is supported.

Tolerances: Not supported.

Delegate near-field: Not supported.

Virial: Not supported.

61

Additional capabilities

Potential: Internally, PEPC uses a Plummer potential 1√
r2+ε2

, which in the case ε = 0

is identical to the Coulomb potential 1
r . Using ε > 0, the pole at r → 0 can be

smoothed to reduce numerical heating during dynamic simulations.

The value of ε can be modified by setting the method-specific parameter pepc epsilon.

Load Balancing: PEPC includes a sophisticated load balancing scheme, that uses the
number of interactions per particle from a previous timestep to estimate and dis-
tribute the expected work in the current computation. This can improve the
algorithms performance by more than 10%. Important: for the load balancing to
work correctly, it is necessary that the frontend application does not reorder or
redistribute the particles between different calls to fcs run().

Multithreading: PEPC can employ multiple threads to perform calculations. This can
help consolidate mulitple MPI ranks into one rank running multiple threads which
will decrease communication volume and memory requirements. In addition to
these worker threads and the controlling main thread, PEPC also spawns a back-
ground thread that handles the fetching and sending of multipole moments.

On a Blue Gene/Q, one MPI rank per node running sixty worker threads provides
good results. PEPC will statically place the main and communications thread on
the first of the sixteen cores of the processor while spreading the worker threads
on the remaining cores in a round robin fashion.

On JuRoPa, two MPI ranks per node and pepc num walk threads=7 are optimal.
Ensure that tpt=8 is set in your jobscript on JuRoPa.

Solver-specific parameters

pepc theta: Barnes-Hut Multipole acceptance parameter. Smaller values for pepc theta

lead to higher precision but also longer runtime. A value of pepc theta=0.0 cor-
responds to the direct O(N2) summation, usual values are in the range of 0.1 <
pepc theta ≤ 0.6.

Data type: fcs float

Default value: pepc theta = 0.6

Value range value: pepc theta ≥ 0.0

pepc epsilon: Cutoff parameter of internally used Plummer potential 1√
r2+ε2

, see above.

Data type: fcs float

Default value: pepc epsilon = 0.0, i.e. Coulomb interaction.
Value range value: pepc epsilon ≥ 0.0

62

pepc num walk threads: Number of threads to use during force computation in addition
to the communicator and main thread. This should usually correspond the the
number of available compute cores per MPI rank.

Data type: fcs int

Default value: pepc num walk threads = 3

Value range value: pepc num walk threads ≥ 1

pepc dipole correction: Integer flag to select the extrinsic-to-intrinsic dipole correc-
tion for periodic systems.

Possible values for pepc dipole correction:
0 no extrinsic-to-intrinsic correction
1 default value: correction expression as given by Redlack and Grindlay (only

for cubic boxes), see [PEPC-5], eqns (19, 20) and [PEPC-6], eq. (5)
2 fictitious charges as given by Kudin (should work for all unit cell shapes),

see [PEPC-7], eq. (2.8)
3 measurement of correction value as given in [PEPC-7], eqns. (2.6, 2.7);

currently not implemented

Data type: fcs int

Default value: pepc dipole correction = 1

Value range value: pepc dipole correction ≥ 0

pepc load balancing: If pepc load balancing = 0, the load balancing scheme is dis-
abled, otherwise it is enabled.

Data type: fcs int

Default value: pepc load balancing = 0

Value range value: pepc load balancing ≥ 0

pepc debug level: Solver debug flag mask. Setting zeroth bit, i. e. an odd value
activates the solver’s status output. Other bits activate different debugging output.
See module debug.f90 for details.

Data type: fcs int

Default value: pepc debug level = 0

Value range value: pepc debug level ≥ 0

pepc npm: Determines the amount of memory allocated for storing tree nodes locally.
Two modes can be chosen based on the sign of pepc npm:

• if pepc npm < 0, allocate memory for 10000× |pepc npm| tree nodes,

• if pepc npm > 0, guess the necessary amount Nn and allocate pepc npm×Nn.

Data type: fcs float

Default value: pepc npm = -45

Value range value: −∞ < pepc npm <∞

63

Solver specific functions

• fcs_pepc_set_epsilon(FCS handle, fcs_float epsilon)

fcs_pepc_get_epsilon(FCS handle, fcs_float* epsilon)

Set/Retrieve the value for pepc epsilon.

• fcs_pepc_set_theta(FCS handle, fcs_float theta)

fcs_pepc_get_theta(FCS handle, fcs_float* theta)

Set/Retrieve the value for pepc theta.

• fcs_pepc_set_debuglevel(FCS handle, fcs_int level)

fcs_pepc_get_debuglevel(FCS handle, fcs_int* level)

Set/Retrieve the value for PEPCs internal debug-level bitmask. This is only in-
tended for development purposes. See file lib/pepc/src/module debug.f90 for
details.

• fcs_pepc_set_num_walk_threads(FCS handle, fcs_int num_walk_threads)

fcs_pepc_get_num_walk_threads(FCS handle, fcs_int* num_walk_threads)

Set/Retrieve the value for pepc num walk threads.

• fcs_pepc_set_load_balancing(FCS handle, fcs_int load_balancing)

fcs_pepc_get_load_balancing(FCS handle, fcs_int* load_balancing)

Set/Retrieve the value for pepc load balancing.

• fcs_pepc_set_dipole_correction(FCS handle, fcs_int dipole_correction)

fcs_pepc_get_dipole_correction(FCS handle, fcs_int* dipole_correction)

Set/Retrieve the value for pepc dipole correction.

• fcs_pepc_set_npm(FCS handle, fcs_float npm)

fcs_pepc_set_npm(FCS handle, fcs_float* npm)

Set/Retrieve the value for pepc npm.

Known bugs or missing features

• virial is not computed at all in PEPC (functionality was lost during transition from
old version to pepc-2.0)

64

• 1D-, 2D-periodicity still needs to be tested.

• Warns that non-cubic systems are experimental.
The following requirements must be satisfied in any case:

– box must be approximately rectangular

– box edges in periodic directions must not be significantly shorter than the
longest edge quantify these

requirements

warn only once
on one process,
if box is non-
cubic

• How to compute the virial for periodic boundaries?

References

PEPC-1 Nature 324, 446 (1986), http://dx.doi.org/10.1038/324446a0

PEPC-2 CPC 183, 880–889, http://dx.doi.org/10.1016/j.cpc.2011.12.013

PEPC-3 PEPC web page, http://www.fz-juelich.de/ias/jsc/pepc

PEPC-4 J. Chem. Phys. 121, 2886 (2004), http://link.aip.org/link/doi/10.1063/1.1771634

PEPC-5 J. Chem. Phys. 107, 10131 (1997), http://link.aip.org/link/doi/10.1063/1.474150

PEPC-6 J. Chem. Phys. 101, 5024 (1994), http://link.aip.org/link/doi/10.1063/1.467425

PEPC-7 Chem. Phys. Lett. 283, 61 (1998), http://dx.doi.org/10.1016/S0009-2614(98)00468-0

move PEPC citations to bibliography

65

http://dx.doi.org/10.1038/324446a0
http://dx.doi.org/10.1016/j.cpc.2011.12.013
http://www.fz-juelich.de/ias/jsc/pepc
http://link.aip.org/link/doi/10.1063/1.1771634
http://link.aip.org/link/doi/10.1063/1.474150
http://link.aip.org/link/doi/10.1063/1.467425
http://dx.doi.org/10.1016/S0009-2614(98)00468-0

12. PP3MG – NameExpanded

PP3MG implements a multigrid method solver. The particle charges are interpolated
to a regular grid. The long-range part is then solved via solving the Poisson equation,
using finite difference/finite volume discretization. The short-range part is computed
directly.

Parameters:

- too many, too poorly documented

rather use meaningful defaults, or values already known in the handle

Box Shape / Periodicity

- open or mixed boundaries: is this supported? for what boxes?

- periodic boundaries: only rectangular or cubic boxes?

Can Delegate Nearfield to MD: currently not

Bugs / Missing Features:

- remove superfluous parameters like periodicity or mpi_dims;

these are already known in the handle

- provide meaningful defaults for parameters like mesh sizes or

workspace size

- document what the remaining parameters mean, and give rules

how to choose reasonable values

- crashes - doesn’t appear to work at present, except for 8 atom

sample in unit cube

- excessive use of pow function - this is slow

- should use solution of previos MD step as start for the iteration

67

13. vmg – Versatile Multigrid

vmg is a grid-based solver for computing the long-range Coulomb interactions of particles
for periodic boundary conditions.

In depth, the Coulomb problem is first split into a short-range and a long-range part,
for when treated individually each can be solved efficiently. This is done by adding so-
called shield charges at the same position as each point-like charge, see figure 13.1. These
are described by a spline function that has compact support, is symmectric around its
center and is normalized to the same magnitude as the original point-like charge. The
short-range part (center, fig. 13.1) is then solved by a direct summation of the pair-wise
interactions between the small number of charges lying in the compact support of these
shield charges. Outside of the support, shield charge and oppositely charged point-like
charge precisely cancel. The long-range part consists of the potential induced by these
shield charges. It is treated by solving a well-known partial differential equation (PDE)
in the form Lu = f , the Poisson equation, where L is the negated Laplace operator
L := −∆, u is the sought-for solution and f is the ”right-hand side”, i. e. the shield
charges sampled on the grid.

Solving PDEs numerically is usually done by discretizing their differential operator in
an extension of the idea of calculating a derivative via the method of finite differences.
This converts the continuous problem Lu = f into a discrete problem Ax = b, where
A is the matrix of the discretized operator, x is the discrete solution and b is again the
”right-hand side”. In the multigrid ansatz, see [VMG-2], Ax = b is obtained on the finest
grid (of d dimensions) while on coarser grids the so-called defect equation Ax′ = b−Ax
is solved. This offers the advantage that the solution time is independent of the system
size. The basic idea of a multigrid is to eliminate the residual, i. e. the error (b − Ax),
at each coarser and coarser level. The picture to have in mind is that the ”noise” is
reduced at multiple frequencies at the same time.

= +

Figure 13.1.: The charge distribution consisting of point charges (left) is split into a
smoothened part (right) and the rest (center), see [VMG-1]

69

A cycle of two grids, i. e. a fine grid and a coarser one, then consists of steps of ”re-
moving noise” (smoothing), projecting down onto the coarser grid (restriction), solving
exactly and bringing this solution back onto the finer grid (prolongation). A multigrid
cycle then consists of the recursive application of two-grid cycles instead of solving ex-
actly, i. e. we step down the grid hierarchy from a finer to the next coarser grid and
eventually move up again.

There are many types of this cycle differing in the precise sequence of smoothing,
prolongation, and restriction steps. Since this is an iterative process we have to perform
such a cycle a (typically small) number of times until the residual is small enough. Then
we have ”converged” sufficiently to the solution.

In order to set up the above PDE, we need the right-hand side b that consists of
the aforementioned shield charges. After solving the PDE on the grid, the Coulomb
potential at the charge positions is obtained by some interpolation scheme. Right now,
a multidimensional Newton interpolation is used, see [VMG-3], where a polynomial is
fit to the solution around the desired position. The field is calculated via analytical
differentiation of these polynomials.

To sum it all up, the multigrid does the following:

1. Bring the shield charges onto the grid (the right-hand side) by evaluating spline
functions for each particle charge.

2. Iterate over the multigrid in a specific cycle until either the (absolute or relative)
residual is lower than a given threshold value (converged) or a set maximum number
of iterations steps is reached (non-converged).

3. The solution is interpolated back at the position of each charge, yielding the long-
range interactions.

4. Short-range interactions are determined via direct summation.

Crucial for its accuracy are then the following parameters of the multigrid solver:

grid size This determines the number of grid points per axis on the finest level. This
parameter mainly affects the accuracy of the long-range part of the solution.

width of spline support This gives the width of the shield charges. The greater is the
width, the more accurate the solution becomes, but at the same time the more
interactions have to be evaluated with the (computationally expensive) short-range
part of the solver. One has to ensure that the number of particles in the support
of these shield charges is kept constant, otherwise the algorithm does not scale
optimally anymore.

discretization scheme This is the manner of constructing a matrix A from the contin-
uous Laplace operator L. A scheme of higher order gives greater accuracy w.r.t.
a fixed grid size. This parameter is solely affecting the accuracy of the long-range
part of the algorithm.

70

For parallelization the particles are distributed over many processes. Each brings
its local particles onto the grid. Also, each process has a certain share of the grid and
performs its multigrid operations on its share, communicating with neighboring processes
during the restriction, prolongation, and smoothing. Conceptionally, there is also one
global communication in every multigrid iteration where the local residuals get summed
up globally. Eventually, each process interpolates back its particle potential.

Common capabilities

Periodicity: Currently only periodic boundary conditions are supported. Support for
open or mixed boundary conditions is in progress.

Box shape: Cubic boxes are supported.

Tolerances: ?

Delegate near-field: Not implemented.

Virial: No.

Additional capabilities

Due to the aforementioned splitting of the Coulomb interactions into a short- and a
long-range part, some parameters affect only the accuracy of either and not necessarily
of both, see their desription. If then a system only has a small long-range part, one
may save substantial calculation time by decreasing accuracy specifically for long-range
calculations. This allows checking whether either interactions part far outweighs the
other. Via the configure switch –enable-debug-output the various energy contributions
of short- and long-range parts are printed to the console. Note however that this switch
should not be used for production runs as it makes unnecessary additional calculations
once an efficient set of parameters has been found.

Solver specific functions

• fcs vmg set max level(FCS handle, fcs_int max_level);

Sets the number of points per axis of the finest grid (optional,default=6). More
specifically it is 2max level, i.e. more points means better approximated solution but
scales with O(max level3). This is the first value to change for better accuracy,
see also near field cells.

• fcs vmg get max level(FCS handle, fcs int* max level);

Get the maximum level of the multigrid algorithm.

71

• fcs vmg set max iterations(FCS handle, fcs int max iterations);

Sets the maximum number of multigrid iterations (optional, default=15). This
is the second threshold besides precision that will stop the iteration. Normally,
you don’t need to change this value, this is only present in case the iteration does
not converge and this sets after how many iteration steps it is considered as ”not
converged”.

• fcs vmg get max iterations(FCS handle, fcs int* max iterations);

Get the maximum number of multigrid iterations.

• fcs vmg set smoothing steps(FCS handle, fcs int smoothing steps);

Set the number of smoothing steps in the multigrid cycle per level (optional, de-
fault=3). Smoothing refers to removal of error at a certain level. This is usually
done for a fixed and small number of iterations. Usually, there is no need to change
it. Fewer steps may be faster (and may cause solution not to converge anymore).
Does not affect the precision but only the computational efficiency.

• fcs vmg get smoothing steps(FCS handle, fcs int *smoothing steps);

Get the number of pre/post-smoothing steps on each level.

• fcs vmg set cycle type(FCS handle, fcs int cycle type);

Specifies the type of multigrid cycle, 1 V-cycle, 2 W-cycle, . . . (optional, default=1).
For parallel computation, V-cycle is the correct type, for serial computation W-
cycle might be slightly more efficient. In case of doubt, leave it to default.

• fcs vmg get cycle type(FCS handle, fcs int *cycle type);

Get the cycle type-number of the multigrid cycle used.

• fcs vmg set precision(FCS handle, fcs float precision);

Set the threshold for (absolute and relative) residual below which internal iteration
is stopped (optional, default=1.0e-8). This is not equal to FCS’s global tolerance!
As an estimate one might use one magnitude below desired tolerance.

• fcs vmg get precision(FCS handle, fcs float *precision);

• fcs vmg set near field cells(FCS handle, fcs int near field cells);

Set the half witdh in number of grid points of compact local support of b-spline
function (radius of shielding charges) (optional, default=4). This value along with
max level has great impact on accuracy but the correlation is reciprocal.

• fcs vmg get near field cells(FCS handle, fcs int *near field cells);

Get the number of near field cells for separating the near/far field part of the
potential.

72

• fcs vmg set interpolation order(FCS handle, fcs int interpolation order);

Set polynomial order of tensored Newton back-interpolation of solution at the
site of each charge (optional, default=5). Usually, does not need to be changed.
Normally, less means precision of grid solution is omitted, more means useless
computation.

• fcs vmg get interpolation order(FCS handle, fcs int *interpolation order);

Get the interpolation order for interpolating the gridded potential to the particle
positions.

• fcs vmg set discretization order(FCS handle, fcs int discretization order);

Discretization scheme in setting up partial differential equation (optional, [2,4], de-
fault=4). This heavily influences precision of solution in conjunction with near field cells
ans max level. This parameter enables direct control of the discretization error of
the long-range part. Default is 4 and leave it at that.

• fcs vmg get discretization order(FCS handle, fcs int *discretization order);

Get the order of the discretization scheme.

Known bugs or missing features

• Open and mixed boundaries still need to be incorporated.

• Separate near-field part?

• How to compute the virial?

References
move vmg citations to bibliography

vmg-1 M. Griebel, S. Knapek, G. Zumbusch Numerical Simulation in Molecular Dynamics –
Numerics, Algorithms, Parallelization, Applications, 2007

vmg-2 U. Trottenberg, C. W. Oosterlee, A. Schuller Multigrid, 2000

vmg-3 K. A. Atkinson Introduction to Numerical Analysis, 1988

73

14. direct – Direct summation

The direct solver implemented within the ScaFaCoS library performs a direct summation
of the pair-wise interactions between all given particles. The parallel computations use
the given distribution of particles among parallel MPI processes (i.e., no additional
redistribution for improving the load-balancing is performed). Let p be the number
of parallel MPI processes. After each process has computed the interactions between
its local particles, p − 1 steps are performed to compute interactions with all non-local
particles. In each step, each process receives the particles of the preceding process,
computes the interactions with its local particles, and sends to the previously received
particles to the succeeding process.

Common capabilities

Periodicity: Open, periodic, or mixed boundaries are supported. The box shape is not
limited by the chosen periodicity. Periodic boundaries are computed by placing a
number of periodic images of the particle system around the given particle system.
The number of images to use in each (periodic) dimensions can be specified with
fcs direct set periodic images.

Box shape: Any (triclinic) box shape is supported.

Tolerances: No.

Delegate near-field: No.

Virial: ?

Additional capabilities

Cutoff: fcs direct set cutoff can be used to specify a cutoff range that limits the
computation of interactions. If the cutoff range is 0, then all interactions are
considered. If the cutoff range is greater than 0, then only interactions inside the
cufoff range are considered. If the cutoff range is less than 0, then only interactions
outside the (positive) cufoff range are considered. If the cutoff range is greater than
0, then fcs direct set cutoff with near can be used to enable the ScaFaCoS
internal near-field solver module instead of the direct solver.

75

Solver specific functions

• fcs direct set cutoff(FCS handle, fcs_float cutoff);

Set the current cutoff range (optional, default = 0).

• fcs_direct_get_cutoff(FCS handle, fcs_float *cutoff);

Retrieve the current cutoff range.

• fcs_direct_set_periodic_images(FCS handle, fcs_int *periodic_images);

Set the number of periodic images to use for computations with periodic boundaries
(optional, default = { 1, 1, 1 }).

• fcs_direct_get_periodic_images(FCS handle, fcs_int *periodic_images);

Retrieve the number of periodic images used for computations with periodic bound-
aries.

• fcs_direct_set_cutoff_with_near(FCS handle, fcs_bool cutoff_with_near);

Enable the near-field solver module (instead of the direct solver) to be used for
computations with a cutoff range.

• fcs_direct_get_cutoff_with_near(FCS handle, fcs_bool *cutoff_with_near);

Retrieve whether the near-field solver module is used for computations with a
cutoff range.

Known bugs or missing features

• Periodic boundaries still need to be tested.

• How to compute the virial for periodic boundaries?

76

15. List of Functions

This chapter lists all the functions within the ScaFaCoS interface, which can be used by
the user to manipulate the library.

15.1. Mandatory Functions

/* C */

FCSResult fcs_init(FCS handle , char* method , MPI_Comm comm);

! Fortran

function fcs_init(handle ,method ,comm)

type(c_ptr) :: handle

char :: method (*)

integer(kind = c_int) :: comm

type(c_ptr) :: fcs_init

Figure 15.1.: Function call: fcs init

77

/* C */

FCSResult fcs_set_common(FCS handle , fcs_int ←↩
short_range_flag , fcs_float* box_a , fcs_float* box_b , ←↩
fcs_float* box_c , fcs_float* offset , fcs_int* ←↩
periodicity , fcs_int total_particles);

! Fortran

function fcs_set_common(handle ,short_range_flag ,box_a ,←↩
box_b ,box_c ,offset ,periodicity ,total_particles)

type(c_ptr) :: handle

logical :: ←↩
short_range_flag

real(kind = fcs_real_kind_isoc) :: box_a (3)

real(kind = fcs_real_kind_isoc) :: box_b (3)

real(kind = fcs_real_kind_isoc) :: box_c (3)

real(kind = fcs_real_kind_isoc) :: offset (3)

logical :: ←↩
periodicity (3)

integer(kind = fcs_integer_kind_isoc) :: ←↩
total_parts

type(c_ptr) :: ←↩
fcs_set_common

Figure 15.2.: Function call: fcs common set

78

/* C */

FCSResult fcs_tune (FCS handle , fcs_int local_particles , ←↩
fcs_int local_max_particles , fcs_float *positions , ←↩
fcs_float *charges);

! Fortran

function fcs_tune(handle ,n_locp ,n_maxlocp ,positions ,←↩
charges)

type(c_ptr), value :: handle

integer(kind = fcs_integer_kind_isoc),value :: n_locp

integer(kind = fcs_integer_kind_isoc),value :: n_maxlocp

real(kind = fcs_real_kind_isoc) :: positions←↩
(3* n_locp)

real(kind = fcs_real_kind_isoc) :: charges(←↩
n_locp)

type(c_ptr) :: fcs_tune

Figure 15.3.: Function call: fcs tune

/* C */

FCSResult fcs_run (FCS handle , fcs_int local_particles , ←↩
fcs_int local_max_particles , fcs_float *positions , ←↩
fcs_float *charges , fcs_float *field , fcs_float *←↩
potentials);

! Fortran

function fcs_run(handle ,n_locp ,n_maxlocp ,positions ,charges←↩
,field ,potential)

type(c_ptr), value :: handle

integer(kind = fcs_integer_kind_isoc),value :: n_locp

integer(kind = fcs_integer_kind_isoc),value :: n_maxlocp

real(kind = fcs_real_kind_isoc) :: positions←↩
(3* n_locp)

real(kind = fcs_real_kind_isoc) :: charges(←↩
n_locp)

real(kind = fcs_real_kind_isoc) :: field (3*←↩
n_locp)

real(kind = fcs_real_kind_isoc) :: potential(←↩
n_locp)

type(c_ptr) :: fcs_run

Figure 15.4.: Function call: fcs run

79

/* C */

FCSResult fcs_destroy (FCS handle);

! Fortran

function fcs_destroy(handle)

type(c_ptr), value :: handle

type(c_ptr) :: fcs_run

Figure 15.5.: Function call: fcs destroy

80

15.2. Generic Functions

15.2.1. Errorhandling

/* C */

fcs_int fcsResult_getReturnCode (FCSResult err);

! Fortran

function fcsResult_getReturnCode(res)

type(c_ptr) :: res

integer(kind = fcs_integer_kind_isoc) :: ←↩
fcsResult_getReturnCode

Figure 15.6.: Function call: fcsResult getReturnCode

/* C */

const char* fcsResult_getErrorMessage (FCSResult err);

! Fortran

function fcsResult_getErrorMessage(res)

type(c_ptr) :: res

character(kind = c_char , len = MESSAGE_LENGTH) :: ←↩
fcsResult_getErrorMessage

Figure 15.7.: Function call: fcsResult getErrorMessage

/* C */

const char* fcsResult_getErrorSource (FCSResult err);

! Fortran

function fcsResult_getErrorSource(res)

type(c_ptr) :: res

character(kind = c_char , len = MESSAGE_LENGTH) :: ←↩
fcsResult_getErrorSource

Figure 15.8.: Function call: fcsResult getErrorSource

81

15.2.2. Getters and Setters

15.2.3. Near Field Computations

/* C */

FCSResult fcs_compute_near_field (FCS handle , fcs_float ←↩
dist , fcs_float *field);

! Fortran

function fcs_compute_near_field(handle ,dist ,field)

type(c_ptr) :: handle

real(kind = fcs_real_kind_isoc) :: dist

real(kind = fcs_real_kind_isoc), dimension (3) :: field

type(c_ptr) :: ←↩
fcs_compute_near_field

Figure 15.9.: Function call: fcs compute near field

/* C */

FCSResult fcs_compute_near_potential (FCS handle , ←↩
fcs_float dist , fcs_float *pot);

! Fortran

function fcs_compute_near_potential(handle ,dist ,pot)

type(c_ptr) :: handle

real(kind = fcs_real_kind_isoc) :: dist

real(kind = fcs_real_kind_isoc) :: pot

type(c_ptr) :: ←↩
fcs_compute_near_potential

Figure 15.10.: Function call: fcs compute near potential

fcs method has near
fehlt!

82

/* C */

FCSResult fcs_compute_near (FCS handle , fcs_float dist , ←↩
fcs_float *pot , fcs_float *field);

! Fortran

function fcs_compute_near(handle ,dist ,pot ,field)

type(c_ptr) :: handle

real(kind = fcs_real_kind_isoc) :: dist

real(kind = fcs_real_kind_isoc) :: pot

real(kind = fcs_real_kind_isoc), dimension (3) :: field

type(c_ptr) :: ←↩
fcs_compute_near

Figure 15.11.: Function call: fcs compute near

/* C */

FCSResult fcs_method_has_near (FCS handle , fcs_int *←↩
has_near);

! Fortran

function fcs_method_has_near(handle ,has_near)

type(c_ptr) :: handle

real(kind = fcs_real_kind_isoc) :: dist

real(kind = fcs_real_kind_isoc), dimension (3) :: field

type(c_ptr) :: ←↩
fcs_compute_near_field

Figure 15.12.: Function call: fcs method has near

15.2.4. Output

83

/* C */

void fcs_printHandle (FCS handle);

! Fortran

subroutine fcs_printHandle(handle)

type(c_ptr) :: handle

Figure 15.13.: Function call: fcs printHandle

15.2.5. Parser

/* C */

FCSResult fcs_parser (FCS handle , const char* parse_string←↩
);

! Fortran

function fcs_printHandle(handle ,parse_string)

type(c_ptr) :: handle

character(kind = c_char , len = *) :: ←↩
parse_string

type(c_ptr) :: ←↩
fcs_parser

Figure 15.14.: Function call: fcs parser

15.2.6. Virial

/* C */

FCSResult fcs_require_virial (FCS handle , fcs_int flag);

! Fortran

function fcs_require_virial(handle ,flag)

type(c_ptr) :: handle

logical :: dist

type(c_ptr) :: ←↩
fcs_require_virial

Figure 15.15.: Function call: fcs require virial

84

/* C */

FCSResult fcs_get_virial (FCS handle , fcs_float* virial);

! Fortran

function fcs_get_virial(handle ,virial)

type(c_ptr) :: handle

real(kind = fcs_real_kind_isoc), dimension (9) :: dist

type(c_ptr) :: ←↩
fcs_require_virial

Figure 15.16.: Function call: fcs get virial

85

15.3. Direct Solver specific Functions

15.3.1. Getters and Setters

15.4. Ewald Solver specific Functions

15.4.1. Getters and Setters

15.5. FMM Solver specific Functions

15.5.1. Getters and Setters

15.6. MEMD Solver specific Functions

15.6.1. Getters and Setters

15.7. MMM1D Solver specific Functions

15.7.1. Getters and Setters

15.8. MMM2D Solver specific Functions

15.8.1. Getters and Setters

15.9. PEPC Solver specific Functions

15.9.1. Getters and Setters

15.10. PP3MG Solver specific Functions

15.10.1. Getters and Setters

15.11. P2NFFT Solver specific Functions

15.11.1. Getters and Setters

15.12. P3M Solver specific Functions

15.12.1. Getters and Setters

15.12.2. Near Field Computations

86

/* C */

FCSResult fcs_p3m_compute_near_field (FCS handle , ←↩
fcs_float dist , fcs_float *field);

! Fortran

function fcs_p3m_compute_near_field(handle ,dist ,field)

type(c_ptr) :: handle

real(kind = fcs_real_kind_isoc) :: dist

real(kind = fcs_real_kind_isoc), dimension (3) :: field

type(c_ptr) :: ←↩
fcs_p3m_compute_near_field

Figure 15.17.: Function call: fcs p3m compute near field

/* C */

FCSResult fcs_p3m_compute_near_potential (FCS handle , ←↩
fcs_float dist , fcs_float *pot);

! Fortran

function fcs_p3m_compute_near_potential(handle ,dist ,pot)

type(c_ptr) :: handle

real(kind = fcs_real_kind_isoc) :: dist

real(kind = fcs_real_kind_isoc) :: pot

type(c_ptr) :: ←↩
fcs_p3m_compute_near_potential

Figure 15.18.: Function call: fcs p3m compute near potential

87

/* C */

FCSResult fcs_p3m_compute_near (FCS handle , fcs_float dist←↩
, fcs_float *pot , fcs_float *field);

! Fortran

function fcs_p3m_compute_near(handle ,dist ,pot ,field)

type(c_ptr) :: handle

real(kind = fcs_real_kind_isoc) :: dist

real(kind = fcs_real_kind_isoc) :: pot

real(kind = fcs_real_kind_isoc), dimension (3) :: field

type(c_ptr) :: ←↩
fcs_p3m_compute_near

Figure 15.19.: Function call: fcs p3m compute near

88

15.13. VMG Solver specific Functions

89

Part II.

Developer’s Guide

91

16. Build System

Prerequisites

This source tree uses GNU autotools

<http://www.gnu.org/software/automake/manual/html_node/Autotools-Introduction.html>

In order to do development, please make sure you have reasonably recent

versions of the following tools installed and in your $PATH:

GNU m4 >= 1.4.13 http://ftp.gnu.org/gnu/m4/m4-1.4.16.tar.gz

GNU Autoconf >= 2.64 http://ftp.gnu.org/gnu/autoconf/autoconf-2.68.tar.gz

GNU Automake >= 1.11 http://ftp.gnu.org/gnu/automake/automake-1.11.3.tar.gz

GNU Libtool >= 2.2.6b http://ftp.gnu.org/gnu/libtool/libtool-2.4.2.tar.gz

Then, set up the autotools infrastructure:

./bootstrap

This should create configure, Makefile.in, and config.h.in files.

If that went without trouble, continue as described in the README file.

To learn how to install the Autotools, have a look at http://www.gnu.org/software/
automake/faq/autotools-faq.html#How-do-I-install-the-Autotools-_0028as-user_

0029_003f.

Build system layout

There is a toplevel configure.ac script and helper macros in the m4/

subdirectory. Each directory where stuff needs to be done later gets

a Makefile.am file which is processed by automake and later by configure.

In order to facilitate modularity of the different solver methods, each

method gets its own configure.ac script in libs/$method/ as well. The

toplevel configure will call each of the lower-level ones which are

enabled and present in turn.

The generated makefiles support all of the standard targets described here:

93

http://www.gnu.org/software/automake/faq/autotools-faq.html#How-do-I-install-the-Autotools-_0028as-user_0029_003f
http://www.gnu.org/software/automake/faq/autotools-faq.html#How-do-I-install-the-Autotools-_0028as-user_0029_003f
http://www.gnu.org/software/automake/faq/autotools-faq.html#How-do-I-install-the-Autotools-_0028as-user_0029_003f

<http://www.gnu.org/software/automake/manual/html_node/Standard-Targets.html>

Generated files

The autotools build system uses several generated files and a few helper

scripts:

1) Helper scripts installed below build-aux/ subdirectories:

- depcomp

- install-sh

- compile

- missing

2a) File generated at bootstrap time, and distributed to end-users:

- aclocal.m4 macro files generated by aclocal

- configure scripts are generated from configure.ac files and additional

macro files (aclocal.m4 and files in some m4/ subdirectory)

- Makefile.in template files generated by automake (and later converted to

Makefile files by config.status)

- config.h.in header template file generated by autoheader (and later

converted to config.h by config.status)

2b) File generated at bootstrap time, NOT distributed to end-users:

- autom4te.cache directory containing autotools-internal cache files.

This may be safely removed at any time.

3) Files generated at configure run time by the end-user:

- config.log a log file containing detailed configure test results

- config.status a script file containing the test results

- config.cache a cache of test results (used when --config-cache is given)

- Makefile the actual makefiles generated by config.status

- config.h a project-specific header that should not be installed

- .deps/* dependency tracking makefile snippets

- stamp-* makefile stamp files

and of course object files and programs etc.

None of these files should be committed to SVN, because the files in (1) and

in (2) may differ between different autotools versions (causing spurious

differences with "svn diff" when two developers use different versions)

and because the files in (3) are system-dependent.

94

For further reading see:

<http://www.gnu.org/software/autoconf/manual/html_node/Making-configure-Scripts.html>

<http://www.gnu.org/software/automake/manual/html_node/CVS.html>

How to add a new solver

If you are adding a new solver to the build system, please adjust the

following build system files:

- Either convert your build system below lib/SOLVER to autotools or ensure

that the usual GNU targets are supported by your makefiles and that VPATH

building works; see here for more information:

<http://www.gnu.org/software/automake/manual/html_node/Third_002dParty-Makefiles.html>

<http://www.gnu.org/software/automake/manual/html_node/Standard-Targets.html>

- Add your solver to the toplevel all_solver_methods macro in the toplevel

configure.ac script. If your solver contains GPL code, or relies on GPL

libraries, add your solver to the gpl_solver_methods macro in the toplevel

configure.ac script. Add the list of libraries the user should link to

to the SCAFACOS_LIBS variable near the end of the script.

- Document in the toplevel README any required libraries for your solver.

- For each Makefile.am you add,

- adjust the SUBDIRS line in the next-higher Makefile.am file,

- add an ’AC_CONFIG_FILES([.../Makefile])’ line to the next-higher

configure.ac, with the correct relative path.

- In each Makefile.am file that deals with preprocessed Fortran, add

include $(top_srcdir)/build-aux/fortran-rules.am

to ensure .f90 files are preprocessed.

- For each C, C++ source file, add

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

before the first included header. However, do not add this to header

files, esp. not to header files that are installed later.

(Note that end-users of scafacos-fcs like IMD should instead include

95

an installed header like fcs.h.)

- For preprocessed Fortran source file in a method, add

#ifdef HAVE_FCONFIG_H

#include <fconfig.h>

#endif

before the first included header.

- In the toplevel fconfig.h.in file, add the following lines for your solver:

! Whether solver method <solver> is enabled.

#undef FCS_ENABLE_<SOLVER>

- Ensure src and test are adjusted (FIXME: please elaborate here)

- Finally, rerun ./bootstrap in the toplevel source directory, then proceed

as described in README.

96

17. Implementation

17.1. Licenses

17.1.1. Applying the (L)GPL

To apply the (L)GPL to your program, do the following:

• Add the following header text in a comment to all of your files (source files and
text files!):

Copyright (C) 2011 <authors>

This file is part of ScaFaCoS.

ScaFaCoS is free software: you can redistribute it and/or modify it

under the terms of the GNU Lesser Public License as published by the

Free Software Foundation, either version 3 of the License, or (at

your option) any later version.

ScaFaCoS is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

Lesser Public License for more details.

You should have received a copy of the GNU Lesser Public License

along with this program. If not, see

<http://www.gnu.org/licenses/>.

• Replace the word <authors> with the names of the authors that have written the
file. If you want to use the GPL instead of the LGPL, replace the word Lesser in
the text by General in all three places.

17.1.2. Simple files

For simple files, you might prefer not to use the long header of the (L)GPL, instead you
can use:

Copyright (C) 2011 <authors>

97

Copying and distribution of this file, with or without modification,

are permitted in any medium without royalty provided the copyright

notice and this notice are preserved. This file is offered as-is,

without any warranty.

98

18. Test Environment

18.1. Generic Test Program scafacos test

The generic test program scafacos test located in tests/generic can be used to
perform precision and performance tests with all solver methods in a common way.
The test case to be computed has to specified in form of an XML file. A single XML
file can contain several particle configurations to be computed one after another using
the same solver method. The particle data (i.e., position and charge values as well as
optional potential and field reference values) can either be read from the input file(s)
(plain text or binary format) or generated online using several internal particle data
generators. Furthermore, the particle system(s) to be computed can explicitly increased
by duplicating the given input particles several times. Additionally, the test program
can write the result of the computations to a new XML output file. This can be used
to create potential and field reference values using one of the implemented solvers as
reference method.

Usage:

./scafacos test [OPTIONS] METHOD FILE

The test program has to be executed in parallel using MPI (e.g. with mpiexec -n

NUMPROCS ./scafacos test...). METHOD specifies the solver method to be used and
can be any method name supported by the FCS init function fcs init (see 3.2.3).
Additionally, the method name can also be none to pass the test case through the
test program (including parsing, particle data generation, duplication, and output), but
without executing a solver. FILE specifies the XML file describing the test case to be
computed. If the zlib compression library was available during building the library, then
the XML files can also be compressed. The command line arguments are only read on
the master process.

Options:

The given command line arguments override conflicting settings that may already exist
within the XML file that specifies the test case.

99

-o OUTFILE Write the given test case including the computed results to a new XML
file OUTFILE.

-b Write the particle data in a machine-dependent binary format to a
separate file (basename of OUTFILE with ’bin’ suffix. This is only useful
together with -o option.

-d DUP Duplicate a given periodic particle system in each periodic dimension.
DUP can be a single value X or three values XxYxZ (i.e., one separate
value for each dimension). The default value of DUP = 1 is equivalent
to no duplication.

-m MODE Specify how the input particle data is distributed among parallel pro-
cesses before the solver is executed. Mode can be one of the following:
• atomistic: Equal distribution without any further assumptions

(this is the default).
• all on master: All particles are on the master process.
• random: Equal distribution after a random redistribution.
• domain: Redistribution depending on the particle positions. This

represents a regular domain decomposition with respect to a
Cartesian grid of MPI processes. The process grid is created
by MPI and supplied to the solver in form of a Cartesian com-
municator.

-c CONF Set additional method configuration parameters. CONF is given to FCS
function fcs parser (see ??).

-i ITER Perform ITER number of runs with each configuration.
-r RES Compute results only for RES of the given particles, where RES can be

an absolute integer number of particles (i.e., without ’.’) or a fractional
number (i.e., with ’.’) relative to the given particles. The default value
RES=1.0 is equivalent to all particles. If the direct solver is used, then
all other particles (i.e., the particles for which no results are computed)
are used as additional input particles for the computations.

Text case XML file format

The XML file contains all necessary information to describe the particle configurations
to be computed. The master process reads the whole XML file at once and stores the
information of all particle configurations in its local memory. Plain text particle data
contained in the XML file is also stored at once on the master process. Input of binary
particle data as well as any generation or duplication of particle data is performed by all
processes in parallel just before the corresponding particle configuration is prepared for
the computations. The root element of the test case XML file is called scafacos test.

100

Element <scafacos test>. . . </scafacos test>

description Root element of the test case XML file
Child-elements <configuration>*

Attributes Type Description
name string Name of the test case.
description string One-line description of the test case.
reference method string Name of the method used to compute the reference po-

tential and field values.
error potential string Estimated maximal error of the reference potential val-

ues.
error field string Estimated maximal error of the reference field values.

Each test case XML file can contain several particle configurations that should be com-
puted one after another using the same solver method. The XML element specifying a
particle configuration is call configuration. Child-elements are used to add particles
in form of plain text or binary particle data as well as through the particle generators or
explicit duplication of given particles. There can be an arbitrary number of particle,
binary, and generate elements. There can be only one duplicate element that specifies
the duplication for all given particles.

Element <configuration>. . . </configuration>
Description Particle configuration to be computed.
Child-elements <particle>*, <binary>*, <generate>*, <duplicate>

Attributes Type Description
offset float[3] Origin of the system box.
box a float[3] First base vector of the system box.
box b float[3] Second base vector of the system box.
box c float[3] Third base vector of the system box.
periodicity bool[3] Periodicity of the system.
epsilon float or

’metallic’
Value of the dielectric permittivity of the system bound-
ary. Use ’metallic’ for infinite permittivity, i.e. metallic
boundary conditions.

decomposition string Input particle distribution: ’atomistic’, ’all on master’,
’random’, or ’domain’. See the description of the -m

option of the test program for further information about
the difference input distributions.

Plain text and binary particle data input

A single particle can be specified as plain text within the XML file using the particle

element. The attributes of this element are used to specify the position, charge, reference
potential, and reference field values. There can be an arbitrary number of these particle
elements.

101

Element <particle>. . . </particle>
Description Data of a single particle.
Child-elements

Attributes Type Description
position float[3] Position of the particle.
q float Charge of the particle.
potential float Reference potential at the position of the particle.
field float[3] Reference field at the position of the particle.

Binary particle data input from a separate file can be specified with the binary element.
The attributes of this element are used to specify the filename, offset, and total number
of particles to read. Position, charge, reference potential, and reference field values are
only read if the corresponding child-elements are present within the binary element.
The binary particle data is read by all processes in parallel using MPI I/O.

Element <binary>. . . </binary>
Description Binary particle data input from a separate file.
Child-elements <positions>, <charges>, <potentials>, <field>

Attributes Type Description
file string Filename of the input file.
offset int Offset in bytes within the input file.
ntotal int Total number of particles to read.

Particle data duplication

The duplicate element is used to specify how often the given particles should be du-
plicated in each dimension. The particle positions can optionally be scaled back to the
original size of the system box.

Element <duplicate>. . . </duplicate>
Description Explicit duplication of the given input particles (additionally to

the duplication specified on the command line).
Child-elements <particle>*, <binary>*, <generate>*

Attributes Type Description
times int[3] Number of times the given input particles should be

duplicated in each dimension. Value ’1 1 1’ corresponds
to no duplication.

rescale bool Whether the particle positions should be scaled back to
the original system size after the duplication.

Particle data generators

The test program contains several generators that can be used to create particle data for
arbitrary large particle configurations. The generate element can be used to specify the
generation of a set of particles. Particle data generators are executed by all processes
in parallel such that each process creates only its locally required particles. The gener-
ation of position, charge, reference potential, and reference field values are be specified
independently from each other.

102

Element <generate> . . . </generate>
Description Generator for particle data
Child-elements <positions>, <charges>, <potentials>, <field>

Attributes Type Description
nlocal int Local number of particles to generate on each process.
ntotal int or

int[3]
Total number of particles to generate. Three values can
be used to specify the number of particles to generate
for a grid of particles.

The generation of particle positions consists of the type of input values to use and of
a shape in which these input values are transformed to. Both type and shape can be
specified as attributes of the positions element.

Element <positions> . . . </positions>
Description Parameters for generating particle positions.

Attributes Type Description
type string Use ’random’, ’hammersley’, or ’halton’ to create cor-

responding sequences of input values. These values are
transformed into the specified shape. Use ’grid’ to create
equally spaced particles. In this case, the three values
within the ntotal attribute of the enclosing generate

element are used to specify the number of particles in
each dimension of the grid.

shape string Use the generate sequences of input values to create a
particle distribution shaped like a ’box’, ’ball’, or the
surface of a ’sphere’. Furthermore, two way of creat-
ing plummer distributions are available (’plummer’ and
’plummer ball’). All distributions are scaled to fit into
the given system box.

Particle charges, reference potential, and reference field values can either be set to a
single constant value or a list of alternating values.

Element <charges>. . . </charges>,
<potentials>. . . </potentials>,
<field>. . . </field>

Description Parameters for generating particle charges, reference potentials,
and reference field values.

child-elements none

Attributes Type Description
type string Use ’const’ or ’alternate’ to set the particle data to a

single constant value or to a list of alternating values,
respectively.

value float[*] Constant or alternating value(s) to use.

103

18.2. Numerical Results

18.3. Generation of Simulation Data

We consider Hammersley- and Halton sequences [13]. These sequences provide pseudo
random numbers such that the distance between two particles does not become too
small. We use the program HAMMERSLEY [1] from John Burkardt to generate these
sequences.

These sequences are defined as follows: Let p prime. Each number k ∈ N can be
uniquely represented as

k = a0 + a1p+ a2p
2 + . . .+ arp

r,

with r ∈ N and ai ∈ {0, . . . , p− 1}, i = 0, . . . , r. The function Φp(k) is given by

Φp(k) =
a0
p

+
a1
p2

+
a2
p3

+ . . .+
ar
pr+1

.

Hammersley Sequences Let the dimension d and prime numbers p1, p2, . . . , pd−1 with
p1 < p2 < . . . < pd−1 be given. Furthermore let N the number of particles. The k-th
d-dimensional particle of the Hammersley distribution is given by(

k

N
,Φp1(k),Φp2(k), . . . ,Φpd−1

(k)

)
, k = 0, . . . , N − 1.

Halton Sequences Let in addition a prime number pd with pd−1 < pd given. The k-th
d-dimensional particle of the Halton distribution is given by

(Φp1(k),Φp2(k), . . . ,Φpd(k)) , k = 0, . . . , N − 1.

Since each component of the k-th particle is independent of N , one can produce addi-
tional particles.

18.4. Error

In order to demonstrate the efficiency of our methods with a more simple discrete sum
we start with the calculation of the potential ϕ caused by N charged particles with
charges q` given by

ϕ(rj) =

N∑
`=1
j 6=`

q`
‖rj − r`‖

, (rj ∈ R3).

the force
F (rj) :=

(
F0 (rj) , F1 (rj) , F2 (rj)

)>
= −qj ∇ϕ (rj)

104

the energy

E :=
1

2

N∑
j=1

qj ϕ (rj) =
1

2

N∑
j=1

qj

N∑
`=1
`6=j

qj
‖rj − r`‖2

and the virial
???

We investigate the absolute energy error

EEabs(a, b) = |Ea − Eb| ,

the absolute RMS potential error

Eϕabs(a,b) =

(
1

N

N∑
k=1

|ϕa(rk)− ϕb(rk)|2
)1/2

,

the absolute RMS force error

EFabs(a,b) =

(
1

N

N∑
k=1

‖Fa(rk)− Fb(rk)‖22

)1/2

,

the corresponding relative errors

EErel(a, b) =
|Ea − Eb|
|Ea|

,

Eϕrel(a,b) =

(
N∑
k=1

|ϕa(rk)− ϕb(rk)|2
)1/2(N∑

k=1

|ϕa(rk)|2
)−1/2

,

EFrel(a,b) =

(
N∑
k=1

‖Fa(rk)− Fb(rk)‖22

)1/2(N∑
k=1

‖Fa(rk)‖22

)−1/2
,

where a and b represent the different techniques for the computation. Furthermore we
investigate the sum F S(a) =

∑N
j=1 F (rj), which should be zero and compute FS(a) :=

‖F S(a)‖∞.

18.5. Distributions and Results

18.5.1. Distribution hammersley ball

We consider Hammersley sequences in the cube [0, 1]3 generated by p1 = 2, p2 = 3, and,
finally, projected in the ball

(x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2 ≤ (0.5)2.

105

We choose the charges q` ∈ {−1; 1} random such that

N∑
`=1

q` ∈ {−1; 0; 1} .

 0

 0.2

 0.4

 0.6

 0.8

 1 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 18.1.: Distribution hammersley ball with 500 randomly charged particles.

We choose the following parameter for our tests.

18.5.2. Distribution hammersley ball neg charge

As numerical test we used a ball uniformly filled with charged particles. The total charge
of the ball has been kept with Q = −1 nC. Thus the particles are assumed to posses the
charge q` = q = −1/N nC (` = 1, . . . , N), where N denotes the number of particles in the
ball. These particles are also regarded as macro-particles representing the distribution
of all particles (for instance electrons) in a bunch.

Since a ball uniformly filled with an increasing number of particles of equal charge
gets more and more close to a ball with charge Q =

∑N
`=1 q`, we compare the results

of the summation to the analytically known potential of a homogeneously charged ball
given by (normalized by the factor 4πε0)

ϕasym(rj) =
Q

4πε0

(
3

2
− ‖rj‖

2R2

)
, ‖rj‖ ≤ R,

where R denotes the radius of the ball.
The numerical experiments documented in Table 18.5 show that we obtain with our

fast algorithm the same errors as with the straightforward (slow) summation but with an
numerical effort of only O(N logN). Hereby the parameters of the P2NFFT are chosen
such that the approximation error is less than the simulation error. Finally, we test the
algorithm for the computation of the electrostatic field. It is well known that the field
of a homogeneously charged ball is given by (normalized by the factor 4πε0)

Easym(rj) = Q
(rj
R3

)
, ‖rj‖ ≤ R.

106

FMM P2NFFT

N ??? ??? ??? ??? n m p εI = εB
500 ??? ??? ??? ??? 32,32,32 2 5 3.5/32

5 000 ??? ??? ??? ??? 32,32,32 2 5 3.5/32
50 000 ??? ??? ??? ??? 64,64,64 2 5 3.5/64

500 000 ??? ??? ??? ??? 128,128,128 2 5 3.5/128

Table 18.1.: Parameters for the distribution hammersley ball

N tdirect tFMM tP2NFFT Eϕrel (direct,FMM) Eϕrel (direct,P2NFFT)

500 ??? ??? ??? ??? ???
5 000 ??? ??? ??? ??? ???

50 000 ??? ??? ??? ??? ???
500 000 * ??? ??? * *

Table 18.2.: Time and Error for 32 processes

P tFMM tP2NFFT Eϕrel (ref,FMM) Eϕrel (ref,P2NFFT)

32 ??? ??? ??? ???
128 ??? ??? ??? ???
512 ??? ??? ??? ???

2048 ??? ??? ??? ???
8192 ??? ??? ??? ???

Table 18.3.: Strong scaling for N = 1 000 000 particles and error bound Eϕrel ≤ 10−4

P tFMM tP2NFFT Eϕrel (ref,FMM) Eϕrel (ref,P2NFFT)

32 ??? ??? ??? ???
128 ??? ??? ??? ???
512 ??? ??? ??? ???

2048 ??? ??? ??? ???
8192 ??? ??? ??? ???

Table 18.4.: Weak scaling for N = 1 000 000 particles per process and error bound Eϕrel ≤
10−4

107

 0

 0.2

 0.4

 0.6

 0.8

 1 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 18.2.: Distribution hammersley ball with 500 negative charged particles.

N tslow tfast Eϕrel(asym,slow) Eϕrel(asym,P2NFFT) Eϕrel(slow,P2NFFT)

10 000 ??? ??? ??? ??? ???

50 000 ??? ??? ??? ??? ???

100 000 ??? ??? ??? ??? ???

250 000 * ??? * ??? *

500 000 * ??? * ??? *

1 000 000 * ??? * ??? *

Table 18.5.: Computational time and the error Erel for the potential ϕ, *estimated.

108

Part III.

Bibliography

109

19. Bibliography

[1] HAMMERSLEY – The Hammersley Quasirandom Sequence. URL http://people.

scs.fsu.edu/~burkardt/cpp_src/hammersley/hammersley.html.

[2] pkg-config man page. URL http://linux.die.net/man/1/pkg-config. linux
manual page for pkg-package tool.

[3] The Fortran 2003 Handbook - The Complete Syntax, Features and Procedures.
Springer Science+Business Media, 2009.

[4] M. Abramowitz and I. A. Stegun, editors. Handbook of Mathematical Functions.
National Bureau of Standards, Washington, DC, USA, 1972.

[5] M. Deserno and C. Holm. How to mesh up Ewald sums. I. A theoretical and
numerical comparison of various particle mesh routines. J. Chem. Phys., 109:7678
– 7693, 1998.

[6] Daan Frenkel and Berend Smit. Understanding molecular simulation: From algo-
rithms to applications. Academic Press, 2002.

[7] Fredrik Hedman and Aatto Laaksonen. Ewald summation based on nonuniform
fast Fourier transform. Chem. Phys. Lett., 425:142 – 147, 2006.

[8] Jiri Kolafa and John W. Perram. Cutoff errors in the Ewald summation formulae
for point charge systems. Mol. Simul., 9(5):351–368, 1992. URL http://www.icpf.

cas.cz/jiri/papers/ewalderr/default.htm.

[9] A. C. Maggs and V. Rosseto. Local simulation algorithms for coulombic interactions.
Phys. Rev. Lett., 88:196402, 2002.

[10] I. Pasichnyk and B. Dünweg. Coulomb interactions via local dynamics: A molecular-
dynamics algorithm. J. Phys.: Condens. Matter, 16(38):3999–4020, September
2004.

[11] Michael Pippig and Daniel Potts. Particle simulation based on nonequispaced fast
Fourier transforms. In Godehard Sutmann, Paul Gibbon, and Thomas Lippert,
editors, Fast Methods for Long-Range Interactions in Complex Systems, IAS-Series,
pages 131 – 158, Jülich, 2011. Forschungszentrum Jülich. ISBN 9783893367146.
URL http://hdl.handle.net/2128/4441.

111

http://people.scs.fsu.edu/~burkardt/cpp_src/hammersley/hammersley.html
http://people.scs.fsu.edu/~burkardt/cpp_src/hammersley/hammersley.html
http://linux.die.net/man/1/pkg-config
http://www.icpf.cas.cz/jiri/papers/ewalderr/default.htm
http://www.icpf.cas.cz/jiri/papers/ewalderr/default.htm
http://hdl.handle.net/2128/4441

[12] Godehard Sutmann. Molecular dynamics - vision and reality. In Johannes Gro-
tendorst, S. Blügel, and Dominik Marx, editors, Computational Nanoscience: Do
It Yourself !, volume 31 of NIC Series, pages 159 – 194, Jülich, February 2006.
Forschungszentrum Jülich, John von Neumann Institute for Computing. ISBN 3-
00-017350-1. Lecture Notes.

[13] Tien-Tsin Wong, Wai-Shing Luk, and Pheng-Ann Heng. Sampling with Hammersley
and Halton Points. Journal of graphics tools, 2(2):9–24, 1997.

112

Part IV.

Index

113

List of Tables

1.1. Overview of the features of the different solvers. 14

2.1. List of common configure options of the ScaFaCoS library. 17

3.1. Solvers implemented in ScaFaCoS (02/2012) 20
3.2. ScaFaCoS data types for C . 21
3.3. ScaFaCoS data kinds for Fortran . 22
3.4. ScaFaCoS mathematical macros . 23
3.5. ScaFaCoS error values . 24
3.6. Parameters for fcs init . 24
3.7. Parameters for fcs common set . 26

18.1. Parameters for the distribution hammersley ball 107
18.2. Time and Error for 32 processes . 107
18.3. Strong scaling for N = 1 000 000 particles and error bound Eϕrel ≤ 10−4 . . 107
18.4. Weak scaling for N = 1 000 000 particles per process and error bound

Eϕrel ≤ 10−4 . 107
18.5. Computational time and the error Erel for the potential ϕ, *estimated. . . 108

115

List of Figures

3.1. Use of the provided header / module of the ScaFaCoS library. 21
3.2. exemplary usage of pkg-config to get the necessary information for com-

pilation . 21
3.3. Scheme of system parameters describing the form and position of the

simulation box . 25
3.4. Example for string truncation for strings used with ScaFaCoS 28
3.5. Example of a parser string setting the first box vector, the near field flag

and a method-specific parameter. 29

9.1. Splitting of Coulomb potential into near field (blue) and far field (red). . . 46

13.1. The charge distribution consisting of point charges (left) is split into a
smoothened part (right) and the rest (center), see [VMG-1] 69

15.1. Function call: fcs init . 77
15.2. Function call: fcs common set . 78
15.3. Function call: fcs tune . 79
15.4. Function call: fcs run . 79
15.5. Function call: fcs destroy . 80
15.6. Function call: fcsResult getReturnCode 81
15.7. Function call: fcsResult getErrorMessage 81
15.8. Function call: fcsResult getErrorSource 81
15.9. Function call: fcs compute near field . 82
15.10.Function call: fcs compute near potential 82
15.11.Function call: fcs compute near . 83
15.12.Function call: fcs method has near . 83
15.13.Function call: fcs printHandle . 84
15.14.Function call: fcs parser . 84
15.15.Function call: fcs require virial . 84
15.16.Function call: fcs get virial . 85
15.17.Function call: fcs p3m compute near field 87
15.18.Function call: fcs p3m compute near potential 87
15.19.Function call: fcs p3m compute near . 88

18.1. Distribution hammersley ball with 500 randomly charged particles. . . . 106
18.2. Distribution hammersley ball with 500 negative charged particles. 108

117

Index

Build System, 93

C++, 13
C99, 13
Compilation, 15
Configure, 15

data types, 21
direct, 75
Direct Summation, 75

error handling, 27
Ewald, 43

Fast Multipole Method, 31
feature matrix, 13
FFTW, 13
FMM, 31
Fortran 2003, 13
Functions

fcs common set, 23, 78
fcs compute near, 83
fcs compute near field, 82
fcs compute near potential, 82
fcs destroy, 27, 80
fcs get virial, 85
fcs init, 22, 77
fcs method has near, 83
fcs p3m compute near, 88
fcs p3m compute near field, 87
fcs p3m compute near potential, 87
fcs parser, 29, 84
fcs printHandle, 29, 84
fcs require virial, 84
fcs run, 27, 79
fcs tune, 26, 79

fcsResult getErrorMessage, 81
fcsResult getErrorSource, 81
fcsResult getReturnCode, 81

Implementation, 97
Installation, 15

Maxwell Equation Molecular Dynamics,
33

MEMD, 33
MMM1D, 39
MMM2D, 41
MPI, 13
Multigrid, 67, 69

NameExpanded, 67
near field solver, 28

P3M, 59
P2NFFT, 45
P3M, 59
parameter output, 29
parser, 29
Particle Mesh Ewald, 59
Particle-Particle NFFT, 45
Particle-Particle Particle-Mesh Ewald, 59
PEPC, 61
pp3mg, 67
Pretty Efficient Parallel Coulomb Solver,

61

requirements, 12

Solver
data types, 21
direct, 75

119

Direct Summation, 75
Ewald, 43
Fast Multipole Method, 31
FMM, 31
Maxwell Equation Molecular Dynam-

ics, 33
MEMD, 33
MMM1D, 39
MMM2D, 41
NameExpanded, 67
P3M, 59
P2NFFT, 45
P3M, 59
Particle-Particle NFFT, 45
Particle-Particle Particle-Mesh Ewald,

59
PEPC, 61
pp3mg, 67
Pretty Efficient Parallel Coulomb Solver,

61
Versatile Multigrid, 69
vmg, 69

Versatile Multigrid, 69
vmg, 69

120

	Contents
	Todo List
	User's Guide
	Introduction
	What ScaFaCoS Computes
	Acknowledgements
	Licensing
	Requirements
	Feature Matrix

	Compiling and installing ScaFaCoS
	Interface
	Basic Ideas of the Interface
	Use of the ScaFaCoS Library
	Error Handling
	Fortran Specifics
	Further Functionality

	FMM – Fast Multipole Method
	MEMD – Maxwell Equation Molecular Dynamics
	Description of the method
	Systems suited for the algorithm
	Solver-specific parameters
	Solver-specific functions
	Known bugs or missing features

	MMM1D
	MMM2D
	Ewald
	P2NFFT – Particle-Particle NFFT
	Description of the Method
	Features
	Solver-specific Parameters
	Solver-specific Functions

	P3M – Particle-Particle Particle-Mesh Ewald
	Features
	Solver-specific Parameters

	PEPC – Pretty Efficient Parallel Coulomb Solver
	PP3MG – NameExpanded
	vmg – Versatile Multigrid
	direct – Direct summation
	List of Functions
	Mandatory Functions
	Generic Functions
	Direct Solver specific Functions
	Ewald Solver specific Functions
	FMM Solver specific Functions
	MEMD Solver specific Functions
	MMM1D Solver specific Functions
	MMM2D Solver specific Functions
	PEPC Solver specific Functions
	PP3MG Solver specific Functions
	P2NFFT Solver specific Functions
	P3M Solver specific Functions
	VMG Solver specific Functions

	Developer's Guide
	Build System
	Implementation
	Licenses

	Test Environment
	Generic Test Program scafacos_test
	Numerical Results
	Generation of Simulation Data
	Error
	Distributions and Results

	Bibliography
	Bibliography

	Index
	List of Tables
	List of Figures
	Index

